Nuprl Lemma : isom-games_wf

[g1,g2:SimpleGame].  (g1 ≅ g2 ∈ ℙ)


Proof




Definitions occuring in Statement :  isom-games: g1 ≅ g2 simple-game: SimpleGame uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T isom-games: g1 ≅ g2 so_lambda: λ2x.t[x] prop: and: P ∧ Q implies:  Q so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  exists_wf sg-pos_wf all_wf sg-legal1_wf sg-legal2_wf equal_wf simple-game_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality hypothesis lambdaEquality productEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[g1,g2:SimpleGame].    (g1  \mcong{}  g2  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-01_06_47
Last ObjectModification: 2019_06_20-PM-00_59_03

Theory : co-recursion-2


Home Index