Nuprl Lemma : F-bisimulation_wf
∀[F:Type ⟶ Type]. ∀[R:corec(T.F[T]) ⟶ corec(T.F[T]) ⟶ ℙ].
  x,y.R[x;y] is an T.F[T]-bisimulation ∈ ℙ' supposing ContinuousMonotone(T.F[T])
Proof
Definitions occuring in Statement : 
F-bisimulation: x,y.R[x; y] is an T.F[T]-bisimulation, 
corec: corec(T.F[T]), 
continuous-monotone: ContinuousMonotone(T.F[T]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
F-bisimulation: x,y.R[x; y] is an T.F[T]-bisimulation, 
implies: P ⇒ Q, 
prop: ℙ, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
cand: A c∧ B, 
guard: {T}, 
continuous-monotone: ContinuousMonotone(T.F[T]), 
type-monotone: Monotone(T.F[T]), 
type-continuous: Continuous(T.F[T])
Lemmas referenced : 
corec-ext, 
all_wf, 
subtype_rel_wf, 
corec_wf, 
subtype_rel_self, 
equal_wf, 
subtype_rel_transitivity, 
subtype_rel_weakening, 
continuous-monotone_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
universeEquality, 
independent_isectElimination, 
hypothesis, 
instantiate, 
functionEquality, 
productEquality, 
functionExtensionality, 
because_Cache, 
cumulativity, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[R:corec(T.F[T])  {}\mrightarrow{}  corec(T.F[T])  {}\mrightarrow{}  \mBbbP{}].
    x,y.R[x;y]  is  an  T.F[T]-bisimulation  \mmember{}  \mBbbP{}'  supposing  ContinuousMonotone(T.F[T])
 Date html generated: 
2019_06_20-PM-00_37_09
 Last ObjectModification: 
2018_08_07-PM-02_08_29
Theory : co-recursion
Home
Index