Nuprl Lemma : Wless_antireflexive

[A:Type]. ∀[B:A ⟶ Type]. ∀[w1:W(A;a.B[a])].  (w1 <  w1))


Proof




Definitions occuring in Statement :  Wcmp: Wcmp(A;a.B[a];leq) W: W(A;a.B[a]) bfalse: ff uall: [x:A]. B[x] infix_ap: y so_apply: x[s] not: ¬A function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False so_lambda: λ2x.t[x] so_apply: x[s] infix_ap: y all: x:A. B[x] Wcmp: Wcmp(A;a.B[a];leq) ifthenelse: if then else fi  bfalse: ff btrue: tt Wsup: Wsup(a;b) prop: subtype_rel: A ⊆B exists: x:A. B[x] guard: {T}
Lemmas referenced :  W-induction not_wf Wcmp_wf bfalse_wf W_wf all_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis independent_functionElimination functionEquality because_Cache dependent_functionElimination voidElimination universeEquality isect_memberEquality cumulativity productElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w1:W(A;a.B[a])].    (\mneg{}(w1  <    w1))



Date html generated: 2016_05_14-AM-06_16_04
Last ObjectModification: 2015_12_26-PM-00_04_28

Theory : co-recursion


Home Index