Nuprl Lemma : Wless_antireflexive
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[w1:W(A;a.B[a])].  (¬(w1 <  w1))
Proof
Definitions occuring in Statement : 
Wcmp: Wcmp(A;a.B[a];leq)
, 
W: W(A;a.B[a])
, 
bfalse: ff
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
not: ¬A
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
Wcmp: Wcmp(A;a.B[a];leq)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
Wsup: Wsup(a;b)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
W-induction, 
not_wf, 
Wcmp_wf, 
bfalse_wf, 
W_wf, 
all_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
functionEquality, 
because_Cache, 
dependent_functionElimination, 
voidElimination, 
universeEquality, 
isect_memberEquality, 
cumulativity, 
productElimination
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w1:W(A;a.B[a])].    (\mneg{}(w1  <    w1))
Date html generated:
2016_05_14-AM-06_16_04
Last ObjectModification:
2015_12_26-PM-00_04_28
Theory : co-recursion
Home
Index