Nuprl Lemma : fix-corec-partial1
∀[A:Type]
  (∀[F:Type ⟶ Type]. ∀[f:(corec(T.F[T]) ⟶ partial(A)) ⟶ corec(T.F[T]) ⟶ partial(A)].
     (fix(f) ∈ corec(T.F[T]) ⟶ partial(A))) supposing 
     (mono(A) and 
     value-type(A))
Proof
Definitions occuring in Statement : 
corec: corec(T.F[T])
, 
partial: partial(T)
, 
mono: mono(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
fix: fix(F)
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
Lemmas referenced : 
bottom_wf_function, 
fixpoint-induction-bottom2, 
value-type_wf, 
mono_wf, 
partial_wf, 
corec_wf, 
void_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
voidElimination, 
thin, 
instantiate, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
independent_isectElimination, 
cumulativity, 
lambdaFormation
Latex:
\mforall{}[A:Type]
    (\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[f:(corec(T.F[T])  {}\mrightarrow{}  partial(A))  {}\mrightarrow{}  corec(T.F[T])  {}\mrightarrow{}  partial(A)].
          (fix(f)  \mmember{}  corec(T.F[T])  {}\mrightarrow{}  partial(A)))  supposing 
          (mono(A)  and 
          value-type(A))
Date html generated:
2016_05_14-AM-06_24_58
Last ObjectModification:
2016_01_12-PM-03_19_28
Theory : co-recursion
Home
Index