Nuprl Lemma : fix-corec-partial1

[A:Type]
  (∀[F:Type ⟶ Type]. ∀[f:(corec(T.F[T]) ⟶ partial(A)) ⟶ corec(T.F[T]) ⟶ partial(A)].
     (fix(f) ∈ corec(T.F[T]) ⟶ partial(A))) supposing 
     (mono(A) and 
     value-type(A))


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) partial: partial(T) mono: mono(T) value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T fix: fix(F) function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] prop: all: x:A. B[x]
Lemmas referenced :  bottom_wf_function fixpoint-induction-bottom2 value-type_wf mono_wf partial_wf corec_wf void_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality voidElimination thin instantiate lemma_by_obid hypothesis sqequalHypSubstitution isectElimination sqequalRule lambdaEquality applyEquality hypothesisEquality universeEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache independent_isectElimination cumulativity lambdaFormation

Latex:
\mforall{}[A:Type]
    (\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[f:(corec(T.F[T])  {}\mrightarrow{}  partial(A))  {}\mrightarrow{}  corec(T.F[T])  {}\mrightarrow{}  partial(A)].
          (fix(f)  \mmember{}  corec(T.F[T])  {}\mrightarrow{}  partial(A)))  supposing 
          (mono(A)  and 
          value-type(A))



Date html generated: 2016_05_14-AM-06_24_58
Last ObjectModification: 2016_01_12-PM-03_19_28

Theory : co-recursion


Home Index