Nuprl Lemma : k-ext-iff

[k:ℕ]. ∀[A,B:ℕk ⟶ Type].  uiff(A ≡ B;∀i:ℕk. i ≡ i)


Proof




Definitions occuring in Statement :  k-ext: A ≡ B int_seg: {i..j-} nat: ext-eq: A ≡ B uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  k-ext: A ≡ B uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] ext-eq: A ≡ B k-subtype: A ⊆ B nat: subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  int_seg_wf k-subtype_wf all_wf ext-eq_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lambdaFormation sqequalHypSubstitution productElimination thin hypothesis dependent_functionElimination hypothesisEquality extract_by_obid isectElimination natural_numberEquality setElimination rename lambdaEquality independent_pairEquality axiomEquality because_Cache productEquality functionExtensionality applyEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[A,B:\mBbbN{}k  {}\mrightarrow{}  Type].    uiff(A  \mequiv{}  B;\mforall{}i:\mBbbN{}k.  A  i  \mequiv{}  B  i)



Date html generated: 2018_05_21-PM-00_09_03
Last ObjectModification: 2017_10_18-PM-02_32_19

Theory : co-recursion


Home Index