Nuprl Lemma : stream-bijection
∀[A:Type]. Bij(stream(A);ℕ ⟶ A;λs,n. s-nth(n;s))
Proof
Definitions occuring in Statement : 
s-nth: s-nth(n;s)
, 
stream: stream(A)
, 
biject: Bij(A;B;f)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
surject: Surj(A;B;f)
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
nat_wf, 
s-nth_wf, 
stream_wf, 
stream-extensionality, 
stream-map_wf, 
nats_wf, 
nth-stream-map, 
istype-void, 
stream-subtype, 
top_wf, 
nth-nats
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :universeIsType, 
universeEquality, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
sqequalRule, 
cut, 
hypothesis, 
Error :equalityIsType1, 
Error :functionIsType, 
introduction, 
extract_by_obid, 
hypothesisEquality, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
because_Cache, 
Error :inhabitedIsType, 
independent_isectElimination, 
applyLambdaEquality, 
applyEquality, 
Error :dependent_pairFormation_alt, 
Error :functionExtensionality_alt, 
Error :isect_memberEquality_alt, 
voidElimination, 
dependent_functionElimination
Latex:
\mforall{}[A:Type].  Bij(stream(A);\mBbbN{}  {}\mrightarrow{}  A;\mlambda{}s,n.  s-nth(n;s))
Date html generated:
2019_06_20-PM-00_37_46
Last ObjectModification:
2018_10_02-AM-10_06_13
Theory : co-recursion
Home
Index