Nuprl Lemma : stream-bijection

[A:Type]. Bij(stream(A);ℕ ⟶ A;λs,n. s-nth(n;s))


Proof




Definitions occuring in Statement :  s-nth: s-nth(n;s) stream: stream(A) biject: Bij(A;B;f) nat: uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] implies:  Q member: t ∈ T surject: Surj(A;B;f) uimplies: supposing a exists: x:A. B[x] top: Top subtype_rel: A ⊆B
Lemmas referenced :  nat_wf s-nth_wf stream_wf stream-extensionality stream-map_wf nats_wf nth-stream-map istype-void stream-subtype top_wf nth-nats
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :universeIsType,  universeEquality independent_pairFormation Error :lambdaFormation_alt,  sqequalRule cut hypothesis Error :equalityIsType1,  Error :functionIsType,  introduction extract_by_obid hypothesisEquality Error :lambdaEquality_alt,  sqequalHypSubstitution isectElimination thin cumulativity because_Cache Error :inhabitedIsType,  independent_isectElimination applyLambdaEquality applyEquality Error :dependent_pairFormation_alt,  Error :functionExtensionality_alt,  Error :isect_memberEquality_alt,  voidElimination dependent_functionElimination

Latex:
\mforall{}[A:Type].  Bij(stream(A);\mBbbN{}  {}\mrightarrow{}  A;\mlambda{}s,n.  s-nth(n;s))



Date html generated: 2019_06_20-PM-00_37_46
Last ObjectModification: 2018_10_02-AM-10_06_13

Theory : co-recursion


Home Index