Nuprl Lemma : stream-extensionality
∀[A:Type]. ∀[x,y:stream(A)].  x = y ∈ stream(A) supposing ∀n:ℕ. (s-nth(n;x) = s-nth(n;y) ∈ A)
Proof
Definitions occuring in Statement : 
s-nth: s-nth(n;s), 
stream: stream(A), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x y.t[x; y], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
infix_ap: x f y, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
cand: A c∧ B, 
prop: ℙ, 
guard: {T}, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
subtype_rel: A ⊆r B, 
top: Top, 
s-nth: s-nth(n;s), 
s-cons: x.s, 
eq_int: (i =z j), 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
sq_stable: SqStable(P), 
squash: ↓T, 
true: True, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
has-value: (a)↓
Lemmas referenced : 
stream-coinduction, 
all_wf, 
nat_wf, 
equal_wf, 
s-nth_wf, 
stream_wf, 
false_wf, 
le_wf, 
stream-decomp, 
stream-subtype, 
top_wf, 
s_hd_cons_lemma, 
s-hd_wf, 
decidable__le, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
s_tl_cons_lemma, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
le_antisymmetry_iff, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
add-subtract-cancel, 
value-type-has-value, 
set-value-type, 
int-value-type, 
s-tl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
cumulativity, 
independent_isectElimination, 
lambdaFormation, 
independent_pairFormation, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
applyEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
callbyvalueReduce, 
sqleReflexivity, 
addEquality, 
setElimination, 
rename, 
unionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
intEquality, 
minusEquality, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate
Latex:
\mforall{}[A:Type].  \mforall{}[x,y:stream(A)].    x  =  y  supposing  \mforall{}n:\mBbbN{}.  (s-nth(n;x)  =  s-nth(n;y))
Date html generated:
2017_04_14-AM-07_47_26
Last ObjectModification:
2017_02_27-PM-03_17_36
Theory : co-recursion
Home
Index