Nuprl Lemma : s-nth_wf
∀[A:Type]. ∀[n:ℕ]. ∀[s:stream(A)].  (s-nth(n;s) ∈ A)
Proof
Definitions occuring in Statement : 
s-nth: s-nth(n;s), 
stream: stream(A), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
s-nth: s-nth(n;s), 
eq_int: (i =z j), 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
pi1: fst(t), 
s-hd: s-hd(s), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
has-value: (a)↓, 
s-cons: x.s
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
stream_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
nat_wf, 
s-hd_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
le_weakening, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
value-type-has-value, 
int-value-type, 
stream-decomp, 
stream-subtype, 
top_wf, 
s-tl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
callbyvalueReduce, 
sqleReflexivity, 
unionElimination, 
independent_pairFormation, 
productElimination, 
addEquality, 
applyEquality, 
voidEquality, 
intEquality, 
minusEquality, 
because_Cache, 
universeEquality, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate
Latex:
\mforall{}[A:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:stream(A)].    (s-nth(n;s)  \mmember{}  A)
Date html generated:
2017_04_14-AM-07_47_13
Last ObjectModification:
2017_02_27-PM-03_17_12
Theory : co-recursion
Home
Index