Nuprl Lemma : nth-nats

n:ℕ(s-nth(n;nats()) n)


Proof




Definitions occuring in Statement :  nats: nats() s-nth: s-nth(n;s) nat: all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  nats: nats() all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: nat: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q sq_type: SQType(T) false: False ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b s-nth: s-nth(n;s) mk-stream: mk-stream(f;x) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff not: ¬A has-value: (a)↓ callbyvalueall: callbyvalueall has-valueall: has-valueall(a)
Lemmas referenced :  subtype_base_sq int_subtype_base equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal add-zero istype-nat nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than zero-add subtract-1-ge-0 eq_int_wf uiff_transitivity equal-wf-base bool_wf assert_wf eqtt_to_assert assert_of_eq_int le_weakening iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot istype-assert istype-void value-type-has-value int-value-type subtract_wf valueall-type-has-valueall int-valueall-type evalall-reduce add-associates add-swap add-commutes add-comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis applyEquality lambdaEquality_alt imageElimination hypothesisEquality equalityTransitivity equalitySymmetry universeIsType universeEquality dependent_functionElimination natural_numberEquality setElimination rename sqequalRule imageMemberEquality baseClosed because_Cache productElimination independent_functionElimination intWeakElimination independent_pairFormation voidElimination axiomEquality functionIsTypeImplies inhabitedIsType callbyvalueReduce sqleReflexivity unionElimination equalityElimination baseApply closedConclusion equalityIstype sqequalBase functionIsType addEquality Error :memTop

Latex:
\mforall{}n:\mBbbN{}.  (s-nth(n;nats())  \msim{}  n)



Date html generated: 2020_05_19-PM-09_36_54
Last ObjectModification: 2019_12_31-PM-00_59_15

Theory : co-recursion


Home Index