Nuprl Lemma : stream-lex_transitivity

T:Type. ∀R:T ⟶ T ⟶ ℙ.  (Trans(T;x,y.x y)  AntiSym(T;x,y.x y)  Trans(stream(T);s1,s2.s1 stream-lex(T;R) s2))


Proof




Definitions occuring in Statement :  stream-lex: stream-lex(T;R) stream: stream(A) anti_sym: AntiSym(T;x,y.R[x; y]) trans: Trans(T;x,y.E[x; y]) prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q stream-lex: stream-lex(T;R) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] prop: so_apply: x[s] and: P ∧ Q subtype_rel: A ⊆B trans: Trans(T;x,y.E[x; y]) isect-rel: isect-rel(T;i.R[i]) guard: {T} cand: c∧ B anti_sym: AntiSym(T;x,y.R[x; y]) true: True
Lemmas referenced :  bigrel-induction stream_wf trans_wf s-hd_wf equal_wf s-tl_wf all_wf nat_wf anti_sym_wf isect-rel_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis dependent_functionElimination sqequalRule lambdaEquality applyEquality functionExtensionality functionEquality universeEquality productEquality because_Cache independent_functionElimination productElimination independent_pairFormation promote_hyp equalitySymmetry hyp_replacement applyLambdaEquality equalityTransitivity natural_numberEquality

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    (Trans(T;x,y.x  R  y)  {}\mRightarrow{}  AntiSym(T;x,y.x  R  y)  {}\mRightarrow{}  Trans(stream(T);s1,s2.s1  stream-lex(T;R)  s2))



Date html generated: 2017_04_14-AM-07_48_30
Last ObjectModification: 2017_02_27-PM-03_18_12

Theory : co-recursion


Home Index