Nuprl Lemma : stream_subtype_base
∀[T:Type]. stream(T) ⊆r Base supposing T ⊆r Base
Proof
Definitions occuring in Statement : 
stream: stream(A)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
stream: stream(A)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
corec_subtype_base, 
sqn+1type_product, 
sqntype_subtype_base, 
sqntype_wf, 
nat_wf, 
subtype_rel_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
productEquality, 
hypothesisEquality, 
universeEquality, 
independent_isectElimination, 
lambdaFormation, 
hypothesis, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  stream(T)  \msubseteq{}r  Base  supposing  T  \msubseteq{}r  Base
Date html generated:
2019_06_20-PM-00_37_39
Last ObjectModification:
2018_08_17-PM-04_32_22
Theory : co-recursion
Home
Index