Nuprl Lemma : stream_subtype_base

[T:Type]. stream(T) ⊆Base supposing T ⊆Base


Proof




Definitions occuring in Statement :  stream: stream(A) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a stream: stream(A) so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B
Lemmas referenced :  corec_subtype_base sqn+1type_product sqntype_subtype_base sqntype_wf nat_wf subtype_rel_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality productEquality hypothesisEquality universeEquality independent_isectElimination lambdaFormation hypothesis axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  stream(T)  \msubseteq{}r  Base  supposing  T  \msubseteq{}r  Base



Date html generated: 2019_06_20-PM-00_37_39
Last ObjectModification: 2018_08_17-PM-04_32_22

Theory : co-recursion


Home Index