Nuprl Lemma : less_sqequal
∀[a,b,x1,y1,x2,y2:Base].
  if (a) < (b)  then x1  else y1 ~ if (a) < (b)  then x2  else y2 
  supposing ((a ∈ ℤ) ∧ (b ∈ ℤ)) 
⇒ ((a < b 
⇒ (x1 ~ x2)) ∧ ((¬a < b) 
⇒ (y1 ~ y2)))
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
less: if (a) < (b)  then c  else d
, 
int: ℤ
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
equal-wf-base, 
not_wf, 
less_than_wf, 
is-exception_wf, 
has-value_wf_base, 
less_sqle
Rules used in proof : 
sqequalSqle, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
productElimination, 
promote_hyp, 
divergentSqle, 
sqleReflexivity, 
productEquality, 
because_Cache, 
functionEquality, 
intEquality, 
sqequalIntensionalEquality, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b,x1,y1,x2,y2:Base].
    if  (a)  <  (b)    then  x1    else  y1  \msim{}  if  (a)  <  (b)    then  x2    else  y2 
    supposing  ((a  \mmember{}  \mBbbZ{})  \mwedge{}  (b  \mmember{}  \mBbbZ{}))  {}\mRightarrow{}  ((a  <  b  {}\mRightarrow{}  (x1  \msim{}  x2))  \mwedge{}  ((\mneg{}a  <  b)  {}\mRightarrow{}  (y1  \msim{}  y2)))
Date html generated:
2016_05_13-PM-03_45_42
Last ObjectModification:
2016_01_14-PM-07_06_36
Theory : computation
Home
Index