Nuprl Lemma : less_sqequal

[a,b,x1,y1,x2,y2:Base].
  if (a) < (b)  then x1  else y1 if (a) < (b)  then x2  else y2 
  supposing ((a ∈ ℤ) ∧ (b ∈ ℤ))  ((a <  (x1 x2)) ∧ ((¬a < b)  (y1 y2)))


Proof




Definitions occuring in Statement :  less_than: a < b uimplies: supposing a uall: [x:A]. B[x] not: ¬A implies:  Q and: P ∧ Q member: t ∈ T less: if (a) < (b)  then c  else d int: base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q and: P ∧ Q prop:
Lemmas referenced :  base_wf equal-wf-base not_wf less_than_wf is-exception_wf has-value_wf_base less_sqle
Rules used in proof :  sqequalSqle cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin sqequalRule baseApply closedConclusion baseClosed hypothesisEquality independent_isectElimination lambdaFormation independent_functionElimination hypothesis independent_pairFormation productElimination promote_hyp divergentSqle sqleReflexivity productEquality because_Cache functionEquality intEquality sqequalIntensionalEquality isect_memberFormation introduction sqequalAxiom isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b,x1,y1,x2,y2:Base].
    if  (a)  <  (b)    then  x1    else  y1  \msim{}  if  (a)  <  (b)    then  x2    else  y2 
    supposing  ((a  \mmember{}  \mBbbZ{})  \mwedge{}  (b  \mmember{}  \mBbbZ{}))  {}\mRightarrow{}  ((a  <  b  {}\mRightarrow{}  (x1  \msim{}  x2))  \mwedge{}  ((\mneg{}a  <  b)  {}\mRightarrow{}  (y1  \msim{}  y2)))



Date html generated: 2016_05_13-PM-03_45_42
Last ObjectModification: 2016_01_14-PM-07_06_36

Theory : computation


Home Index