Nuprl Lemma : less_sqle
∀[a,b,x1,y1,x2,y2:Base].
  if (a) < (b)  then x1  else y1 ≤ if (a) < (b)  then x2  else y2 
  supposing ((a ∈ ℤ) ∧ (b ∈ ℤ)) ⇒ ((a < b ⇒ (x1 ≤ x2)) ∧ ((¬a < b) ⇒ (y1 ≤ y2)))
Proof
Definitions occuring in Statement : 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
less: if (a) < (b)  then c  else d, 
int: ℤ, 
base: Base, 
sqle: s ≤ t
Definitions unfolded in proof : 
has-value: (a)↓, 
member: t ∈ T, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
uimplies: b supposing a, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P)
Lemmas referenced : 
has-value_wf_base, 
is-exception_wf, 
equal-wf-base, 
less_than_wf, 
sqle_wf_base, 
not_wf, 
base_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
decidable__lt
Rules used in proof : 
divergentSqle, 
cut, 
callbyvalueLess, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesis, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
productElimination, 
thin, 
introduction, 
lessExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
sqleReflexivity, 
extract_by_obid, 
isectElimination, 
functionEquality, 
productEquality, 
because_Cache, 
isect_memberFormation, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
independent_pairFormation, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
lessCases, 
sqequalAxiom, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
imageMemberEquality, 
imageElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
impliesFunctionality, 
exceptionLess
Latex:
\mforall{}[a,b,x1,y1,x2,y2:Base].
    if  (a)  <  (b)    then  x1    else  y1  \mleq{}  if  (a)  <  (b)    then  x2    else  y2 
    supposing  ((a  \mmember{}  \mBbbZ{})  \mwedge{}  (b  \mmember{}  \mBbbZ{}))  {}\mRightarrow{}  ((a  <  b  {}\mRightarrow{}  (x1  \mleq{}  x2))  \mwedge{}  ((\mneg{}a  <  b)  {}\mRightarrow{}  (y1  \mleq{}  y2)))
Date html generated:
2017_04_14-AM-07_21_57
Last ObjectModification:
2017_02_27-PM-02_55_20
Theory : computation
Home
Index