Nuprl Lemma : less_sqle

[a,b,x1,y1,x2,y2:Base].
  if (a) < (b)  then x1  else y1 ≤ if (a) < (b)  then x2  else y2 
  supposing ((a ∈ ℤ) ∧ (b ∈ ℤ))  ((a <  (x1 ≤ x2)) ∧ ((¬a < b)  (y1 ≤ y2)))


Proof




Definitions occuring in Statement :  less_than: a < b uimplies: supposing a uall: [x:A]. B[x] not: ¬A implies:  Q and: P ∧ Q member: t ∈ T less: if (a) < (b)  then c  else d int: base: Base sqle: s ≤ t
Definitions unfolded in proof :  has-value: (a)↓ member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] implies:  Q prop: uimplies: supposing a cand: c∧ B all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P)
Lemmas referenced :  has-value_wf_base is-exception_wf equal-wf-base less_than_wf sqle_wf_base not_wf base_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf iff_weakening_uiff assert_of_bnot decidable__lt
Rules used in proof :  divergentSqle cut callbyvalueLess sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity hypothesis sqequalRule baseApply closedConclusion baseClosed hypothesisEquality productElimination thin introduction lessExceptionCases axiomSqleEquality exceptionSqequal sqleReflexivity extract_by_obid isectElimination functionEquality productEquality because_Cache isect_memberFormation isect_memberEquality equalityTransitivity equalitySymmetry independent_functionElimination independent_pairFormation lambdaFormation unionElimination equalityElimination independent_isectElimination lessCases sqequalAxiom voidElimination voidEquality natural_numberEquality imageMemberEquality imageElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity impliesFunctionality exceptionLess

Latex:
\mforall{}[a,b,x1,y1,x2,y2:Base].
    if  (a)  <  (b)    then  x1    else  y1  \mleq{}  if  (a)  <  (b)    then  x2    else  y2 
    supposing  ((a  \mmember{}  \mBbbZ{})  \mwedge{}  (b  \mmember{}  \mBbbZ{}))  {}\mRightarrow{}  ((a  <  b  {}\mRightarrow{}  (x1  \mleq{}  x2))  \mwedge{}  ((\mneg{}a  <  b)  {}\mRightarrow{}  (y1  \mleq{}  y2)))



Date html generated: 2017_04_14-AM-07_21_57
Last ObjectModification: 2017_02_27-PM-02_55_20

Theory : computation


Home Index