Nuprl Lemma : lifting-add-spread-2

[a:ℤ]. ∀[b,C:Top].  let x,y in C[x;y] let x,y in C[x;y] supposing (a)↓


Proof




Definitions occuring in Statement :  has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] spread: spread def add: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓ subtype_rel: A ⊆B and: P ∧ Q all: x:A. B[x] implies:  Q so_apply: x[s1;s2] prop: top: Top false: False
Lemmas referenced :  int_subtype_base value-type-has-value int-value-type equal_wf top_wf pair-eta has-value_wf_base is-exception_wf int-add-exception exception-not-value
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqleRule thin divergentSqle callbyvalueAdd sqequalHypSubstitution hypothesis sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality extract_by_obid productElimination equalityTransitivity equalitySymmetry intEquality lambdaFormation isectElimination independent_isectElimination dependent_functionElimination independent_functionElimination callbyvalueSpread productEquality sqleReflexivity addExceptionCases axiomSqleEquality spreadExceptionCases because_Cache exceptionSqequal isect_memberEquality voidElimination voidEquality sqequalAxiom

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b,C:Top].    a  +  let  x,y  =  b  in  C[x;y]  \msim{}  let  x,y  =  b  in  a  +  C[x;y]  supposing  (a)\mdownarrow{}



Date html generated: 2017_04_14-AM-07_21_13
Last ObjectModification: 2017_02_27-PM-02_54_53

Theory : computation


Home Index