Nuprl Lemma : all-quotient
∀T:Type
  (canonicalizable(T)
  
⇒ (∀S:Type. ∀E:S ⟶ S ⟶ ℙ.
        (EquivRel(S;a,b.E[a;b]) 
⇒ (∀t:T. (x,y:S//E[x;y]) 
⇐⇒ f,g:∀t:T. S//fun-equiv(T;a,b.↓E[a;b];f;g)))))
Proof
Definitions occuring in Statement : 
fun-equiv: fun-equiv(X;a,b.E[a; b];f;g)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
canonicalizable: canonicalizable(T)
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
fun-equiv: fun-equiv(X;a,b.E[a; b];f;g)
, 
dep-fun-equiv: dep-fun-equiv(X;x,a,b.E[x; a; b];f;g)
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_lambda: λ2x y.t[x; y]
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
all-quotient-dependent, 
all_wf, 
quotient_wf, 
fun-equiv_wf, 
squash_wf, 
fun-equiv-rel, 
equiv_rel_squash, 
equiv_rel_wf, 
canonicalizable_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
lambdaEquality, 
sqequalRule, 
cumulativity, 
productElimination, 
independent_pairFormation, 
isectElimination, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}T:Type
    (canonicalizable(T)
    {}\mRightarrow{}  (\mforall{}S:Type.  \mforall{}E:S  {}\mrightarrow{}  S  {}\mrightarrow{}  \mBbbP{}.
                (EquivRel(S;a,b.E[a;b])
                {}\mRightarrow{}  (\mforall{}t:T.  (x,y:S//E[x;y])  \mLeftarrow{}{}\mRightarrow{}  f,g:\mforall{}t:T.  S//fun-equiv(T;a,b.\mdownarrow{}E[a;b];f;g)))))
Date html generated:
2018_05_21-PM-01_20_10
Last ObjectModification:
2017_11_03-PM-02_33_17
Theory : continuity
Home
Index