Nuprl Lemma : all-quotient

T:Type
  (canonicalizable(T)
   (∀S:Type. ∀E:S ⟶ S ⟶ ℙ.
        (EquivRel(S;a,b.E[a;b])  (∀t:T. (x,y:S//E[x;y]) ⇐⇒ f,g:∀t:T. S//fun-equiv(T;a,b.↓E[a;b];f;g)))))


Proof




Definitions occuring in Statement :  fun-equiv: fun-equiv(X;a,b.E[a; b];f;g) equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] canonicalizable: canonicalizable(T) prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q squash: T implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q prop: so_apply: x[s] so_apply: x[s1;s2;s3] so_apply: x[s1;s2] iff: ⇐⇒ Q and: P ∧ Q fun-equiv: fun-equiv(X;a,b.E[a; b];f;g) dep-fun-equiv: dep-fun-equiv(X;x,a,b.E[x; a; b];f;g) uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] uimplies: supposing a rev_implies:  Q
Lemmas referenced :  all-quotient-dependent all_wf quotient_wf fun-equiv_wf squash_wf fun-equiv-rel equiv_rel_squash equiv_rel_wf canonicalizable_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination lambdaEquality sqequalRule cumulativity productElimination independent_pairFormation isectElimination applyEquality functionExtensionality independent_isectElimination because_Cache functionEquality universeEquality

Latex:
\mforall{}T:Type
    (canonicalizable(T)
    {}\mRightarrow{}  (\mforall{}S:Type.  \mforall{}E:S  {}\mrightarrow{}  S  {}\mrightarrow{}  \mBbbP{}.
                (EquivRel(S;a,b.E[a;b])
                {}\mRightarrow{}  (\mforall{}t:T.  (x,y:S//E[x;y])  \mLeftarrow{}{}\mRightarrow{}  f,g:\mforall{}t:T.  S//fun-equiv(T;a,b.\mdownarrow{}E[a;b];f;g)))))



Date html generated: 2018_05_21-PM-01_20_10
Last ObjectModification: 2017_11_03-PM-02_33_17

Theory : continuity


Home Index