Nuprl Lemma : bounded-type-cantor
Bounded(ℕ ⟶ 𝔹)
Proof
Definitions occuring in Statement :
bounded-type: Bounded(T)
,
nat: ℕ
,
bool: 𝔹
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
implies: P
⇒ Q
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
guard: {T}
,
uimplies: b supposing a
,
true: True
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
squash: ↓T
,
sq_exists: ∃x:A [B[x]]
,
exists: ∃x:A. B[x]
,
nat: ℕ
,
subtype_rel: A ⊆r B
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
bounded-type: Bounded(T)
Lemmas referenced :
istype-nat,
istype-le,
iff_weakening_equal,
subtype_rel_self,
absval_pos,
istype-int,
true_wf,
squash_wf,
le_wf,
bool_wf,
nat_wf,
cantor-to-int-bounded
Rules used in proof :
functionIsType,
independent_functionElimination,
independent_isectElimination,
universeEquality,
instantiate,
baseClosed,
imageMemberEquality,
natural_numberEquality,
inhabitedIsType,
universeIsType,
equalitySymmetry,
equalityTransitivity,
isectElimination,
imageElimination,
dependent_set_memberEquality_alt,
productElimination,
functionEquality,
closedConclusion,
sqequalRule,
because_Cache,
rename,
setElimination,
lambdaEquality_alt,
hypothesis,
hypothesisEquality,
applyEquality,
functionExtensionality,
thin,
dependent_functionElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
lambdaFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
Bounded(\mBbbN{} {}\mrightarrow{} \mBbbB{})
Date html generated:
2019_10_15-AM-10_26_23
Last ObjectModification:
2019_10_07-PM-04_52_56
Theory : continuity
Home
Index