Nuprl Lemma : intuitionistic-Ramsey
∀R,T:ℕ ⟶ ℕ ⟶ ℙ.  (b-almost-full(n,m.R[n;m]) 
⇒ b-almost-full(n,m.T[n;m]) 
⇒ b-almost-full(n,m.R[n;m] ∧ T[n;m]))
Proof
Definitions occuring in Statement : 
b-almost-full: b-almost-full(n,m.R[n; m])
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
b-almost-full: b-almost-full(n,m.R[n; m])
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
strict-inc: StrictInc
, 
compose: f o g
Lemmas referenced : 
strict-inc_wf, 
b-almost-full_wf, 
nat_wf, 
b-almost-full-intersection, 
compose-strict-inc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
lemma_by_obid, 
hypothesis, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
independent_functionElimination, 
because_Cache
Latex:
\mforall{}R,T:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}.
    (b-almost-full(n,m.R[n;m])  {}\mRightarrow{}  b-almost-full(n,m.T[n;m])  {}\mRightarrow{}  b-almost-full(n,m.R[n;m]  \mwedge{}  T[n;m]))
Date html generated:
2016_05_14-PM-09_53_48
Last ObjectModification:
2015_12_26-PM-09_46_56
Theory : continuity
Home
Index