Nuprl Lemma : intuitionistic-Ramsey

R,T:ℕ ⟶ ℕ ⟶ ℙ.  (b-almost-full(n,m.R[n;m])  b-almost-full(n,m.T[n;m])  b-almost-full(n,m.R[n;m] ∧ T[n;m]))


Proof




Definitions occuring in Statement :  b-almost-full: b-almost-full(n,m.R[n; m]) nat: prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q b-almost-full: b-almost-full(n,m.R[n; m]) member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] strict-inc: StrictInc compose: g
Lemmas referenced :  strict-inc_wf b-almost-full_wf nat_wf b-almost-full-intersection compose-strict-inc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut lemma_by_obid hypothesis isectElimination thin sqequalRule lambdaEquality applyEquality hypothesisEquality functionEquality cumulativity universeEquality dependent_functionElimination setElimination rename independent_functionElimination because_Cache

Latex:
\mforall{}R,T:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}.
    (b-almost-full(n,m.R[n;m])  {}\mRightarrow{}  b-almost-full(n,m.T[n;m])  {}\mRightarrow{}  b-almost-full(n,m.R[n;m]  \mwedge{}  T[n;m]))



Date html generated: 2016_05_14-PM-09_53_48
Last ObjectModification: 2015_12_26-PM-09_46_56

Theory : continuity


Home Index