Nuprl Lemma : b-almost-full_wf
∀[R:ℕ ⟶ ℕ ⟶ ℙ]. (b-almost-full(n,m.R[n;m]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
b-almost-full: b-almost-full(n,m.R[n; m]), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
b-almost-full: b-almost-full(n,m.R[n; m]), 
so_lambda: λ2x.t[x], 
nat: ℕ, 
so_apply: x[s1;s2], 
strict-inc: StrictInc, 
subtype_rel: A ⊆r B, 
guard: {T}, 
int_upper: {i...}, 
prop: ℙ, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
equiv_rel_true, 
true_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
le_wf, 
int_upper_properties, 
int_upper_subtype_nat, 
int_upper_wf, 
nat_wf, 
exists_wf, 
quotient_wf, 
strict-inc_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
dependent_set_memberEquality, 
setEquality, 
intEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (b-almost-full(n,m.R[n;m])  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-09_51_07
Last ObjectModification:
2016_01_15-PM-10_55_14
Theory : continuity
Home
Index