Nuprl Lemma : b-almost-full_wf

[R:ℕ ⟶ ℕ ⟶ ℙ]. (b-almost-full(n,m.R[n;m]) ∈ ℙ)


Proof




Definitions occuring in Statement :  b-almost-full: b-almost-full(n,m.R[n; m]) nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T b-almost-full: b-almost-full(n,m.R[n; m]) so_lambda: λ2x.t[x] nat: so_apply: x[s1;s2] strict-inc: StrictInc subtype_rel: A ⊆B guard: {T} int_upper: {i...} prop: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q so_apply: x[s] so_lambda: λ2y.t[x; y]
Lemmas referenced :  equiv_rel_true true_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties le_wf int_upper_properties int_upper_subtype_nat int_upper_wf nat_wf exists_wf quotient_wf strict-inc_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality addEquality setElimination rename hypothesisEquality natural_numberEquality applyEquality because_Cache dependent_set_memberEquality setEquality intEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (b-almost-full(n,m.R[n;m])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-09_51_07
Last ObjectModification: 2016_01_15-PM-10_55_14

Theory : continuity


Home Index