Nuprl Lemma : b-almost-full-intersection
This is the main technical lemma from Veldman & Bezem's proof
of the Intuitionistic Ramsey theorem.
We were able to closely follow their proof except that 
before carrying out some of the reasoning steps we have to
"unsquash" some of the hypotheses. 
The needed "unsquashing" is usually done using lemmas
implies-quotient-true or all-quotient-true
(making use of the fact that we can prove canonicalizable(StrictInc)).⋅
∀R,T:ℕ ⟶ ℕ ⟶ ℙ.  (b-almost-full(n,m.R[n;m]) 
⇒ b-almost-full(n,m.T[n;m]) 
⇒ ⇃(∃n:ℕ. ∃m:{n + 1...}. (R[n;m] ∧ T[n;m])))
Proof
Definitions occuring in Statement : 
b-almost-full: b-almost-full(n,m.R[n; m])
, 
quotient: x,y:A//B[x; y]
, 
int_upper: {i...}
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
true: True
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
strict-inc: StrictInc
, 
guard: {T}
, 
int_upper: {i...}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
seq-add: s.x@n
, 
nequal: a ≠ b ∈ T 
, 
less_than: a < b
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cand: A c∧ B
, 
nat_plus: ℕ+
, 
u-almost-full: u-almost-full(n.A[n])
, 
compose: f o g
, 
isr: isr(x)
, 
outr: outr(x)
, 
isl: isl(x)
, 
baf-bar: baf-bar(n,m.R[n; m];n,m.T[n; m];l;a)
, 
pi1: fst(t)
Lemmas referenced : 
monotone-bar-induction-strict3, 
baf-bar_wf, 
int_seg_wf, 
strictly-increasing-seq_wf, 
istype-nat, 
strict-inc_wf, 
nat_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
seq-add_wf, 
int_upper_wf, 
upper_subtype_nat, 
istype-false, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
subtype_rel_self, 
b-almost-full_wf, 
baf-bar-monotone, 
le_wf, 
trivial-quotient-true, 
strict-inc-lower-bound, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nequal-le-implies, 
subtract_wf, 
int_upper_properties, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
add_nat_wf, 
add-is-int-iff, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
false_wf, 
sq_stable_from_decidable, 
decidable__strictly-increasing-seq, 
less_than_wf, 
int_seg_properties, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
decidable__equal_int, 
less_than_functionality, 
le_weakening, 
quotient_wf, 
all_wf, 
exists_wf, 
or_wf, 
true_wf, 
equiv_rel_true, 
all-quotient-true, 
subtype_rel_function, 
int_seg_subtype, 
add-mul-special, 
zero-mul, 
le-add-cancel2, 
canonicalizable_wf, 
canonicalizable-set, 
canonicalizable-base, 
Ramsey-n-3, 
canonicalizable-nat-to-nat, 
primrec-wf2, 
nat_plus_properties, 
nat_plus_subtype_nat, 
less_than_transitivity1, 
less_than_irreflexivity, 
int_seg_subtype_nat, 
implies-quotient-true2, 
u-almost-full-finite-intersection, 
implies-quotient-true, 
compose-strict-inc, 
member-less_than, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
decidable__exists_int_seg, 
isr_wf, 
decidable__assert, 
outl_wf, 
isl_wf, 
le_weakening2, 
equal_wf, 
le_reflexive, 
not_over_exists, 
decidable__or, 
strictly-increasing-seq-add2-implies, 
intformor_wf, 
int_formula_prop_or_lemma, 
equal-wf-base, 
decidable__and2, 
int_seg_subtype_special, 
int_seg_cases, 
lt_int_wf, 
le_int_wf, 
assert_of_lt_int, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
squash_wf, 
nat_plus_wf, 
b-almost-full-intersection-lemma, 
imax_wf, 
subtype_rel_dep_function, 
imax_strict_ub
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
sqequalRule, 
lambdaEquality_alt, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
inhabitedIsType, 
setElimination, 
rename, 
hypothesis, 
setIsType, 
functionIsType, 
universeIsType, 
natural_numberEquality, 
functionExtensionality, 
because_Cache, 
closedConclusion, 
functionEquality, 
productEquality, 
unionEquality, 
dependent_set_memberEquality_alt, 
addEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
minusEquality, 
instantiate, 
universeEquality, 
intEquality, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
promote_hyp, 
cumulativity, 
hypothesis_subsumption, 
productIsType, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
int_eqReduceTrueSq, 
equalityIsType1, 
int_eqReduceFalseSq, 
inlFormation_alt, 
unionIsType, 
setEquality, 
multiplyEquality, 
equalityIsType4, 
inrFormation_alt, 
equalityIsType3, 
hyp_replacement
Latex:
\mforall{}R,T:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}.
    (b-almost-full(n,m.R[n;m])
    {}\mRightarrow{}  b-almost-full(n,m.T[n;m])
    {}\mRightarrow{}  \00D9(\mexists{}n:\mBbbN{}.  \mexists{}m:\{n  +  1...\}.  (R[n;m]  \mwedge{}  T[n;m])))
Date html generated:
2020_05_19-PM-10_05_50
Last ObjectModification:
2019_10_29-PM-01_46_29
Theory : continuity
Home
Index