Nuprl Lemma : baf-bar-monotone

R,T:ℕ ⟶ ℕ ⟶ ℙ. ∀n:ℕ. ∀s:{s:ℕn ⟶ ℕstrictly-increasing-seq(n;s)} .
  (baf-bar(n,m.R[n;m];n,m.T[n;m];n;s)
   (∀m:ℕ(strictly-increasing-seq(n 1;s.m@n)  baf-bar(n,m.R[n;m];n,m.T[n;m];n 1;s.m@n))))


Proof




Definitions occuring in Statement :  baf-bar: baf-bar(n,m.R[n; m];n,m.T[n; m];l;a) strictly-increasing-seq: strictly-increasing-seq(n;s) seq-add: s.x@n int_seg: {i..j-} nat: prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q baf-bar: baf-bar(n,m.R[n; m];n,m.T[n; m];l;a) and: P ∧ Q exists: x:A. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k uall: [x:A]. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top prop: le: A ≤ B less_than: a < b guard: {T} so_apply: x[s1;s2] seq-add: s.x@n bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈  subtype_rel: A ⊆B cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y]
Lemmas referenced :  nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf int_seg_properties eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf intformle_wf int_formula_prop_eq_lemma int_formula_prop_le_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_wf decidable__equal_int le_wf decidable__le seq-add_wf exists_wf int_seg_wf strictly-increasing-seq_wf baf-bar_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution independent_pairFormation productElimination thin promote_hyp hypothesis dependent_pairFormation setElimination rename dependent_set_memberEquality hypothesisEquality cut introduction extract_by_obid isectElimination dependent_functionElimination addEquality natural_numberEquality unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll because_Cache addLevel hyp_replacement equalitySymmetry applyEquality equalityElimination equalityTransitivity int_eqReduceTrueSq instantiate cumulativity independent_functionElimination int_eqReduceFalseSq functionExtensionality levelHypothesis productEquality universeEquality functionEquality

Latex:
\mforall{}R,T:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  \mforall{}n:\mBbbN{}.  \mforall{}s:\{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}  .
    (baf-bar(n,m.R[n;m];n,m.T[n;m];n;s)
    {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (strictly-increasing-seq(n  +  1;s.m@n)  {}\mRightarrow{}  baf-bar(n,m.R[n;m];n,m.T[n;m];n  +  1;s.m@n))))



Date html generated: 2017_04_20-AM-07_26_28
Last ObjectModification: 2017_02_27-PM-05_59_51

Theory : continuity


Home Index