Nuprl Lemma : baf-bar-monotone
∀R,T:ℕ ⟶ ℕ ⟶ ℙ. ∀n:ℕ. ∀s:{s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)} .
  (baf-bar(n,m.R[n;m];n,m.T[n;m];n;s)
  
⇒ (∀m:ℕ. (strictly-increasing-seq(n + 1;s.m@n) 
⇒ baf-bar(n,m.R[n;m];n,m.T[n;m];n + 1;s.m@n))))
Proof
Definitions occuring in Statement : 
baf-bar: baf-bar(n,m.R[n; m];n,m.T[n; m];l;a)
, 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
seq-add: s.x@n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
baf-bar: baf-bar(n,m.R[n; m];n,m.T[n; m];l;a)
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than: a < b
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
seq-add: s.x@n
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
lelt_wf, 
int_seg_properties, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
intformle_wf, 
int_formula_prop_eq_lemma, 
int_formula_prop_le_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nat_wf, 
decidable__equal_int, 
le_wf, 
decidable__le, 
seq-add_wf, 
exists_wf, 
int_seg_wf, 
strictly-increasing-seq_wf, 
baf-bar_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
independent_pairFormation, 
productElimination, 
thin, 
promote_hyp, 
hypothesis, 
dependent_pairFormation, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
dependent_functionElimination, 
addEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
because_Cache, 
addLevel, 
hyp_replacement, 
equalitySymmetry, 
applyEquality, 
equalityElimination, 
equalityTransitivity, 
int_eqReduceTrueSq, 
instantiate, 
cumulativity, 
independent_functionElimination, 
int_eqReduceFalseSq, 
functionExtensionality, 
levelHypothesis, 
productEquality, 
universeEquality, 
functionEquality
Latex:
\mforall{}R,T:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  \mforall{}n:\mBbbN{}.  \mforall{}s:\{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}  .
    (baf-bar(n,m.R[n;m];n,m.T[n;m];n;s)
    {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (strictly-increasing-seq(n  +  1;s.m@n)  {}\mRightarrow{}  baf-bar(n,m.R[n;m];n,m.T[n;m];n  +  1;s.m@n))))
Date html generated:
2017_04_20-AM-07_26_28
Last ObjectModification:
2017_02_27-PM-05_59_51
Theory : continuity
Home
Index