Nuprl Lemma : baf-bar_wf

[R,T:ℕ ⟶ ℕ ⟶ ℙ]. ∀[l:ℕ]. ∀[a:x:ℕl ⟶ ℕ].  (baf-bar(n,m.R[n;m];n,m.T[n;m];l;a) ∈ ℙ)


Proof




Definitions occuring in Statement :  baf-bar: baf-bar(n,m.R[n; m];n,m.T[n; m];l;a) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T baf-bar: baf-bar(n,m.R[n; m];n,m.T[n; m];l;a) prop: and: P ∧ Q subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] int_seg: {i..j-} so_apply: x[s1;s2] lelt: i ≤ j < k guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top
Lemmas referenced :  lelt_wf int_formula_prop_wf int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermAdd_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties exists_wf nat_wf int_seg_wf subtype_rel_dep_function strictly-increasing-seq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality natural_numberEquality setElimination rename hypothesis lambdaEquality because_Cache intEquality independent_isectElimination lambdaFormation addEquality dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll universeEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity

Latex:
\mforall{}[R,T:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[l:\mBbbN{}].  \mforall{}[a:x:\mBbbN{}l  {}\mrightarrow{}  \mBbbN{}].    (baf-bar(n,m.R[n;m];n,m.T[n;m];l;a)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-09_51_26
Last ObjectModification: 2016_01_15-PM-10_54_20

Theory : continuity


Home Index