Nuprl Lemma : u-almost-full-finite-intersection

k:ℕ. ∀A:ℕk ⟶ ℕ ⟶ ℙ.  ((∀i:ℕk. u-almost-full(n.A[i;n]))  u-almost-full(n.∀i:ℕk. A[i;n]))


Proof




Definitions occuring in Statement :  u-almost-full: u-almost-full(n.A[n]) int_seg: {i..j-} nat: prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] subtype_rel: A ⊆B nat: and: P ∧ Q guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T label: ...$L... t true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  all_wf int_seg_wf u-almost-full_wf nat_wf subtract_wf set_wf less_than_wf primrec-wf2 u-almost-full-filter true_wf int_seg_properties nat_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf subtype_rel_dep_function int_seg_subtype false_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma subtype_rel_self decidable__lt lelt_wf decidable__equal_int equal_wf squash_wf intformeq_wf int_formula_prop_eq_lemma iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality hypothesisEquality functionEquality cumulativity universeEquality rename setElimination instantiate because_Cache intEquality dependent_functionElimination productElimination independent_functionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll unionElimination dependent_set_memberEquality productEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}A:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}i:\mBbbN{}k.  u-almost-full(n.A[i;n]))  {}\mRightarrow{}  u-almost-full(n.\mforall{}i:\mBbbN{}k.  A[i;n]))



Date html generated: 2017_04_20-AM-07_24_14
Last ObjectModification: 2017_02_27-PM-05_59_18

Theory : continuity


Home Index