Nuprl Lemma : all-quotient-true
∀T:Type. (⇃(canonicalizable(T)) ⇒ (∀P:T ⟶ ℙ. (∀t:T. ⇃(P[t]) ⇐⇒ ⇃(∀t:T. P[t]))))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y], 
canonicalizable: canonicalizable(T), 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
true: True, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
guard: {T}, 
true: True, 
quotient: x,y:A//B[x; y], 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
rev_implies: P ⇐ Q
Lemmas referenced : 
prop-truncation-quot, 
implies-quotient-true, 
squash_wf, 
dep-fun-equiv_wf, 
equal-wf-base, 
quotient-member-eq, 
all-quotient-dependent, 
all_wf, 
quotient_wf, 
true_wf, 
equiv_rel_true, 
canonicalizable_wf
Rules used in proof : 
productEquality, 
natural_numberEquality, 
pertypeElimination, 
pointwiseFunctionalityForEquality, 
rename, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
promote_hyp, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
functionEquality, 
universeEquality
Latex:
\mforall{}T:Type.  (\00D9(canonicalizable(T))  {}\mRightarrow{}  (\mforall{}P:T  {}\mrightarrow{}  \mBbbP{}.  (\mforall{}t:T.  \00D9(P[t])  \mLeftarrow{}{}\mRightarrow{}  \00D9(\mforall{}t:T.  P[t]))))
Date html generated:
2017_09_29-PM-06_07_48
Last ObjectModification:
2017_09_07-PM-05_50_23
Theory : continuity
Home
Index