Nuprl Lemma : all-quotient-true

T:Type. (⇃(canonicalizable(T))  (∀P:T ⟶ ℙ(∀t:T. ⇃(P[t]) ⇐⇒ ⇃(∀t:T. P[t]))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] canonicalizable: canonicalizable(T) prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q true: True function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} true: True quotient: x,y:A//B[x; y] so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s] all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a rev_implies:  Q
Lemmas referenced :  prop-truncation-quot implies-quotient-true squash_wf dep-fun-equiv_wf equal-wf-base quotient-member-eq all-quotient-dependent all_wf quotient_wf true_wf equiv_rel_true canonicalizable_wf
Rules used in proof :  productEquality natural_numberEquality pertypeElimination pointwiseFunctionalityForEquality rename productElimination independent_functionElimination dependent_functionElimination promote_hyp sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality applyEquality functionExtensionality because_Cache hypothesis independent_isectElimination functionEquality universeEquality

Latex:
\mforall{}T:Type.  (\00D9(canonicalizable(T))  {}\mRightarrow{}  (\mforall{}P:T  {}\mrightarrow{}  \mBbbP{}.  (\mforall{}t:T.  \00D9(P[t])  \mLeftarrow{}{}\mRightarrow{}  \00D9(\mforall{}t:T.  P[t]))))



Date html generated: 2017_09_29-PM-06_07_48
Last ObjectModification: 2017_09_07-PM-05_50_23

Theory : continuity


Home Index