Nuprl Lemma : monotone-bar-induction-strict3
∀B,Q:n:ℕ ⟶ {s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)}  ⟶ ℙ.
  ((∀n:ℕ. ∀s:{s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)} .
      (B[n;s] ⇒ (∀m:ℕ. (strictly-increasing-seq(n + 1;s.m@n) ⇒ B[n + 1;s.m@n]))))
  ⇒ (∀n:ℕ. ∀s:{s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)} .  (B[n;s] ⇒ ⇃(Q[n;s])))
  ⇒ (∀n:ℕ. ∀s:{s:ℕn ⟶ ℕ| strictly-increasing-seq(n;s)} .
        ((∀m:ℕ. (strictly-increasing-seq(n + 1;s.m@n) ⇒ ⇃(Q[n + 1;s.m@n]))) ⇒ ⇃(Q[n;s])))
  ⇒ (∀alpha:StrictInc. ⇃(∃m:ℕ. B[m;alpha]))
  ⇒ ⇃(Q[0;λx.⊥]))
Proof
Definitions occuring in Statement : 
strict-inc: StrictInc, 
quotient: x,y:A//B[x; y], 
strictly-increasing-seq: strictly-increasing-seq(n;s), 
seq-add: s.x@n, 
int_seg: {i..j-}, 
nat: ℕ, 
bottom: ⊥, 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
true: True, 
set: {x:A| B[x]} , 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
strict-inc: StrictInc, 
so_lambda: λ2x.t[x], 
nat: ℕ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
prop: ℙ, 
so_apply: x[s1;s2], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
guard: {T}, 
exists: ∃x:A. B[x], 
so_lambda: λ2x y.t[x; y], 
uimplies: b supposing a, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
strictly-increasing-seq: strictly-increasing-seq(n;s)
Lemmas referenced : 
monotone-bar-induction-strict2, 
int_formula_prop_less_lemma, 
intformless_wf, 
int_seg_properties, 
seq-add_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
subtype_rel_dep_function, 
strictly-increasing-seq_wf, 
equiv_rel_true, 
true_wf, 
strict-inc-subtype, 
quotient_wf, 
le_wf, 
false_wf, 
implies-quotient-true2, 
exists_wf, 
canonicalizable-nat-to-nat, 
less_than_wf, 
int_seg_wf, 
nat_wf, 
all_wf, 
canonicalizable-set, 
canonicalizable_wf, 
trivial-quotient-true, 
strict-inc_wf, 
all-quotient-true
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
isectElimination, 
sqequalRule, 
because_Cache, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
functionEquality, 
productElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
independent_isectElimination, 
setEquality, 
intEquality, 
addEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
universeEquality, 
cumulativity
Latex:
\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  \{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}    {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}  .
            (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (strictly-increasing-seq(n  +  1;s.m@n)  {}\mRightarrow{}  B[n  +  1;s.m@n]))))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}  .    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}  .
                ((\mforall{}m:\mBbbN{}.  (strictly-increasing-seq(n  +  1;s.m@n)  {}\mRightarrow{}  \00D9(Q[n  +  1;s.m@n])))  {}\mRightarrow{}  \00D9(Q[n;s])))
    {}\mRightarrow{}  (\mforall{}alpha:StrictInc.  \00D9(\mexists{}m:\mBbbN{}.  B[m;alpha]))
    {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}]))
Date html generated:
2016_05_14-PM-09_48_14
Last ObjectModification:
2016_01_15-PM-10_54_01
Theory : continuity
Home
Index