Nuprl Lemma : monotone-bar-induction-strict3

B,Q:n:ℕ ⟶ {s:ℕn ⟶ ℕstrictly-increasing-seq(n;s)}  ⟶ ℙ.
  ((∀n:ℕ. ∀s:{s:ℕn ⟶ ℕstrictly-increasing-seq(n;s)} .
      (B[n;s]  (∀m:ℕ(strictly-increasing-seq(n 1;s.m@n)  B[n 1;s.m@n]))))
   (∀n:ℕ. ∀s:{s:ℕn ⟶ ℕstrictly-increasing-seq(n;s)} .  (B[n;s]  ⇃(Q[n;s])))
   (∀n:ℕ. ∀s:{s:ℕn ⟶ ℕstrictly-increasing-seq(n;s)} .
        ((∀m:ℕ(strictly-increasing-seq(n 1;s.m@n)  ⇃(Q[n 1;s.m@n])))  ⇃(Q[n;s])))
   (∀alpha:StrictInc. ⇃(∃m:ℕB[m;alpha]))
   ⇃(Q[0;λx.⊥]))


Proof




Definitions occuring in Statement :  strict-inc: StrictInc quotient: x,y:A//B[x; y] strictly-increasing-seq: strictly-increasing-seq(n;s) seq-add: s.x@n int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] strict-inc: StrictInc so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B so_apply: x[s] prop: so_apply: x[s1;s2] iff: ⇐⇒ Q and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A guard: {T} exists: x:A. B[x] so_lambda: λ2y.t[x; y] uimplies: supposing a ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_seg: {i..j-} lelt: i ≤ j < k strictly-increasing-seq: strictly-increasing-seq(n;s)
Lemmas referenced :  monotone-bar-induction-strict2 int_formula_prop_less_lemma intformless_wf int_seg_properties seq-add_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties subtype_rel_dep_function strictly-increasing-seq_wf equiv_rel_true true_wf strict-inc-subtype quotient_wf le_wf false_wf implies-quotient-true2 exists_wf canonicalizable-nat-to-nat less_than_wf int_seg_wf nat_wf all_wf canonicalizable-set canonicalizable_wf trivial-quotient-true strict-inc_wf all-quotient-true
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis independent_functionElimination isectElimination sqequalRule because_Cache lambdaEquality natural_numberEquality setElimination rename hypothesisEquality applyEquality functionEquality productElimination dependent_set_memberEquality independent_pairFormation independent_isectElimination setEquality intEquality addEquality unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll universeEquality cumulativity

Latex:
\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  \{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}    {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}  .
            (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (strictly-increasing-seq(n  +  1;s.m@n)  {}\mRightarrow{}  B[n  +  1;s.m@n]))))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}  .    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\{s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(n;s)\}  .
                ((\mforall{}m:\mBbbN{}.  (strictly-increasing-seq(n  +  1;s.m@n)  {}\mRightarrow{}  \00D9(Q[n  +  1;s.m@n])))  {}\mRightarrow{}  \00D9(Q[n;s])))
    {}\mRightarrow{}  (\mforall{}alpha:StrictInc.  \00D9(\mexists{}m:\mBbbN{}.  B[m;alpha]))
    {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}]))



Date html generated: 2016_05_14-PM-09_48_14
Last ObjectModification: 2016_01_15-PM-10_54_01

Theory : continuity


Home Index