Nuprl Lemma : Ramsey-n-3
∀n:ℕ. ∃N:ℕ+. ∀g:ℕN ⟶ ℕN ⟶ ℕn. ∃i,j,k:ℕN. (i < j ∧ j < k ∧ ((g i j) = (g i k) ∈ ℤ) ∧ ((g i k) = (g j k) ∈ ℤ))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
inject: Inj(A;B;f)
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
true: True
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
Lemmas referenced : 
finite-Ramsey, 
false_wf, 
le_wf, 
int_seg_wf, 
all_wf, 
exists_wf, 
less_than_wf, 
equal_wf, 
nat_wf, 
int_seg_properties, 
subtype_base_sq, 
int_subtype_base, 
nat_plus_properties, 
nat_properties, 
satisfiable-full-omega-tt, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
lelt_wf, 
decidable__or, 
decidable__lt, 
intformand_wf, 
intformnot_wf, 
intformor_wf, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_or_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
not_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
hypothesis, 
isectElimination, 
productElimination, 
dependent_pairFormation, 
functionEquality, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality, 
productEquality, 
intEquality, 
applyEquality, 
functionExtensionality, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
voidElimination, 
promote_hyp, 
isect_memberEquality, 
voidEquality, 
computeAll, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
int_eqEquality, 
imageElimination
Latex:
\mforall{}n:\mBbbN{}
    \mexists{}N:\mBbbN{}\msupplus{}.  \mforall{}g:\mBbbN{}N  {}\mrightarrow{}  \mBbbN{}N  {}\mrightarrow{}  \mBbbN{}n.  \mexists{}i,j,k:\mBbbN{}N.  (i  <  j  \mwedge{}  j  <  k  \mwedge{}  ((g  i  j)  =  (g  i  k))  \mwedge{}  ((g  i  k)  =  (g  j  k)))
Date html generated:
2017_04_20-AM-07_26_16
Last ObjectModification:
2017_02_27-PM-05_59_59
Theory : continuity
Home
Index