Nuprl Lemma : Ramsey-n-3

n:ℕ. ∃N:ℕ+. ∀g:ℕN ⟶ ℕN ⟶ ℕn. ∃i,j,k:ℕN. (i < j ∧ j < k ∧ ((g j) (g k) ∈ ℤ) ∧ ((g k) (g k) ∈ ℤ))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + nat: less_than: a < b all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: uall: [x:A]. B[x] exists: x:A. B[x] nat_plus: + cand: c∧ B so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B so_apply: x[s] inject: Inj(A;B;f) guard: {T} lelt: i ≤ j < k uimplies: supposing a sq_type: SQType(T) true: True ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  finite-Ramsey false_wf le_wf int_seg_wf all_wf exists_wf less_than_wf equal_wf nat_wf int_seg_properties subtype_base_sq int_subtype_base nat_plus_properties nat_properties satisfiable-full-omega-tt intformeq_wf itermConstant_wf int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf decidable__or decidable__lt intformand_wf intformnot_wf intformor_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_or_lemma int_formula_prop_less_lemma int_term_value_var_lemma not_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation hypothesis isectElimination productElimination dependent_pairFormation functionEquality setElimination rename because_Cache lambdaEquality productEquality intEquality applyEquality functionExtensionality independent_functionElimination equalityTransitivity equalitySymmetry applyLambdaEquality instantiate cumulativity independent_isectElimination voidElimination promote_hyp isect_memberEquality voidEquality computeAll imageMemberEquality baseClosed unionElimination int_eqEquality imageElimination

Latex:
\mforall{}n:\mBbbN{}
    \mexists{}N:\mBbbN{}\msupplus{}.  \mforall{}g:\mBbbN{}N  {}\mrightarrow{}  \mBbbN{}N  {}\mrightarrow{}  \mBbbN{}n.  \mexists{}i,j,k:\mBbbN{}N.  (i  <  j  \mwedge{}  j  <  k  \mwedge{}  ((g  i  j)  =  (g  i  k))  \mwedge{}  ((g  i  k)  =  (g  j  k)))



Date html generated: 2017_04_20-AM-07_26_16
Last ObjectModification: 2017_02_27-PM-05_59_59

Theory : continuity


Home Index