Nuprl Lemma : finite-Ramsey

k,n:ℕ.
  ∃N:ℕ+
   ∀g:ℕN ⟶ ℕN ⟶ ℕk
     ∃f:ℕn ⟶ ℕN. (Inj(ℕn;ℕN;f) ∧ (∀a,b,c,d:ℕn.  (f a <  c <  ((g (f a) (f b)) (g (f c) (f d)) ∈ ℤ))))


Proof




Definitions occuring in Statement :  inject: Inj(A;B;f) int_seg: {i..j-} nat_plus: + nat: less_than: a < b all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: exists: x:A. B[x] and: P ∧ Q cand: c∧ B implies:  Q prop: subtype_rel: A ⊆B int_seg: {i..j-} nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  finite-Ramsey1 int_seg_wf less_than_wf inject_wf all_wf equal_wf exists_wf nat_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality lambdaEquality isectElimination natural_numberEquality setElimination rename productElimination dependent_pairFormation sqequalRule independent_pairFormation applyEquality functionExtensionality because_Cache productEquality functionEquality intEquality imageElimination equalityTransitivity equalitySymmetry universeEquality independent_functionElimination imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}k,n:\mBbbN{}.
    \mexists{}N:\mBbbN{}\msupplus{}
      \mforall{}g:\mBbbN{}N  {}\mrightarrow{}  \mBbbN{}N  {}\mrightarrow{}  \mBbbN{}k
          \mexists{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}N
            (Inj(\mBbbN{}n;\mBbbN{}N;f)
            \mwedge{}  (\mforall{}a,b,c,d:\mBbbN{}n.    (f  a  <  f  b  {}\mRightarrow{}  f  c  <  f  d  {}\mRightarrow{}  ((g  (f  a)  (f  b))  =  (g  (f  c)  (f  d))))))



Date html generated: 2017_04_20-AM-07_26_05
Last ObjectModification: 2017_02_27-PM-05_59_29

Theory : continuity


Home Index