Nuprl Lemma : strictly-increasing-seq-add2-implies
∀n:ℕ. ∀s:ℕn ⟶ ℕ. ∀x,y:ℕ.
  (strictly-increasing-seq(n + 2;s.x@n.y@n + 1)
  
⇒ {x < y ∧ strictly-increasing-seq(n + 1;s.x@n) ∧ strictly-increasing-seq(n + 1;s.y@n)})
Proof
Definitions occuring in Statement : 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
seq-add: s.x@n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
seq-add: s.x@n
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
less_than: a < b
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
strictly-increasing-seq_wf, 
decidable__le, 
false_wf, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_wf, 
seq-add_wf, 
nat_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
subtype_rel_sets, 
and_wf, 
less_than_wf, 
decidable__lt, 
not-lt-2, 
add-mul-special, 
zero-mul, 
le-add-cancel2, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
le_antisymmetry_iff, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
less-iff-le, 
less_than_transitivity1, 
le_weakening, 
less_than_transitivity2, 
le_weakening2, 
less_than_irreflexivity, 
not-equal-2, 
or_wf, 
decidable__int_equal, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
minusEquality, 
functionExtensionality, 
setEquality, 
functionEquality, 
multiplyEquality, 
int_eqReduceTrueSq, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
impliesFunctionality, 
int_eqReduceFalseSq, 
inlFormation, 
inrFormation, 
addLevel, 
orFunctionality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.  \mforall{}x,y:\mBbbN{}.
    (strictly-increasing-seq(n  +  2;s.x@n.y@n  +  1)
    {}\mRightarrow{}  \{x  <  y  \mwedge{}  strictly-increasing-seq(n  +  1;s.x@n)  \mwedge{}  strictly-increasing-seq(n  +  1;s.y@n)\})
Date html generated:
2017_04_14-AM-07_26_27
Last ObjectModification:
2017_02_27-PM-02_56_12
Theory : bar-induction
Home
Index