Nuprl Lemma : strictly-increasing-seq-add2-implies

n:ℕ. ∀s:ℕn ⟶ ℕ. ∀x,y:ℕ.
  (strictly-increasing-seq(n 2;s.x@n.y@n 1)
   {x < y ∧ strictly-increasing-seq(n 1;s.x@n) ∧ strictly-increasing-seq(n 1;s.y@n)})


Proof




Definitions occuring in Statement :  strictly-increasing-seq: strictly-increasing-seq(n;s) seq-add: s.x@n int_seg: {i..j-} nat: less_than: a < b guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q guard: {T} and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] nat: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k strictly-increasing-seq: strictly-increasing-seq(n;s) seq-add: s.x@n bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b less_than: a < b rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  strictly-increasing-seq_wf decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf seq-add_wf nat_wf int_seg_wf subtype_rel_dep_function subtype_rel_sets and_wf less_than_wf decidable__lt not-lt-2 add-mul-special zero-mul le-add-cancel2 eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int le_antisymmetry_iff eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot less-iff-le less_than_transitivity1 le_weakening less_than_transitivity2 le_weakening2 less_than_irreflexivity not-equal-2 or_wf decidable__int_equal int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality addEquality setElimination rename because_Cache hypothesis natural_numberEquality dependent_functionElimination hypothesisEquality unionElimination voidElimination productElimination independent_functionElimination independent_isectElimination sqequalRule imageMemberEquality baseClosed imageElimination applyEquality lambdaEquality isect_memberEquality voidEquality intEquality minusEquality functionExtensionality setEquality functionEquality multiplyEquality int_eqReduceTrueSq equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp instantiate cumulativity impliesFunctionality int_eqReduceFalseSq inlFormation inrFormation addLevel orFunctionality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.  \mforall{}x,y:\mBbbN{}.
    (strictly-increasing-seq(n  +  2;s.x@n.y@n  +  1)
    {}\mRightarrow{}  \{x  <  y  \mwedge{}  strictly-increasing-seq(n  +  1;s.x@n)  \mwedge{}  strictly-increasing-seq(n  +  1;s.y@n)\})



Date html generated: 2017_04_14-AM-07_26_27
Last ObjectModification: 2017_02_27-PM-02_56_12

Theory : bar-induction


Home Index