Nuprl Lemma : strict-inc-lower-bound

[f:StrictInc]. ∀[i:ℕ].  (i ≤ (f i))


Proof




Definitions occuring in Statement :  strict-inc: StrictInc nat: uall: [x:A]. B[x] le: A ≤ B apply: a
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T strict-inc: StrictInc nat: subtype_rel: A ⊆B sq_stable: SqStable(P) implies:  Q squash: T le: A ≤ B and: P ∧ Q not: ¬A false: False prop: ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q guard: {T} int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b
Lemmas referenced :  lelt_wf decidable__lt int_term_value_subtract_lemma itermSubtract_wf subtract_wf int_formula_prop_not_lemma intformnot_wf le_wf decidable__le less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties strict-inc_wf nat_wf less_than'_wf sq_stable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesisEquality applyEquality hypothesis because_Cache sqequalRule independent_functionElimination imageMemberEquality baseClosed imageElimination productElimination independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidEquality independent_pairFormation computeAll unionElimination setEquality dependent_set_memberEquality

Latex:
\mforall{}[f:StrictInc].  \mforall{}[i:\mBbbN{}].    (i  \mleq{}  (f  i))



Date html generated: 2016_05_14-PM-09_47_29
Last ObjectModification: 2016_01_15-PM-10_54_53

Theory : continuity


Home Index