Nuprl Lemma : strict-inc-lower-bound
∀[f:StrictInc]. ∀[i:ℕ].  (i ≤ (f i))
Proof
Definitions occuring in Statement : 
strict-inc: StrictInc
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
strict-inc: StrictInc
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
Lemmas referenced : 
lelt_wf, 
decidable__lt, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
int_formula_prop_not_lemma, 
intformnot_wf, 
le_wf, 
decidable__le, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
strict-inc_wf, 
nat_wf, 
less_than'_wf, 
sq_stable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
unionElimination, 
setEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[f:StrictInc].  \mforall{}[i:\mBbbN{}].    (i  \mleq{}  (f  i))
Date html generated:
2016_05_14-PM-09_47_29
Last ObjectModification:
2016_01_15-PM-10_54_53
Theory : continuity
Home
Index