Nuprl Lemma : min-inc-seq_wf
∀[a:ℕ ⟶ ℕ]. ∀[n,k:ℕ].  (min-inc-seq(a;n;k) ∈ ℕ)
Proof
Definitions occuring in Statement : 
min-inc-seq: min-inc-seq(a;n;k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
min-inc-seq: min-inc-seq(a;n;k)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
min-increasing-sequence_wf, 
nat_wf, 
unit_wf2, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
unionEquality, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality
Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[n,k:\mBbbN{}].    (min-inc-seq(a;n;k)  \mmember{}  \mBbbN{})
Date html generated:
2019_06_20-PM-03_07_17
Last ObjectModification:
2018_08_21-PM-01_57_20
Theory : continuity
Home
Index