Nuprl Lemma : min-increasing-sequence_wf

[a:ℕ ⟶ ℕ]. ∀[n,k:ℕ].  (min-increasing-sequence(a;n;k) ∈ ℕ?)


Proof




Definitions occuring in Statement :  min-increasing-sequence: min-increasing-sequence(a;n;k) nat: uall: [x:A]. B[x] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right
Definitions unfolded in proof :  assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 exposed-bfalse: exposed-bfalse all: x:A. B[x] prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B uimplies: supposing a subtype_rel: A ⊆B nat: min-increasing-sequence: min-increasing-sequence(a;n;k) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int_seg_wf le_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_le_int eqtt_to_assert bool_wf false_wf int_seg_subtype_nat le_int_wf it_wf unit_wf2 nat_wf primrec_wf
Rules used in proof :  functionEquality isect_memberEquality axiomEquality voidElimination independent_functionElimination cumulativity instantiate dependent_functionElimination promote_hyp dependent_pairFormation equalitySymmetry equalityTransitivity productElimination equalityElimination lambdaFormation independent_pairFormation independent_isectElimination natural_numberEquality functionExtensionality applyEquality rename setElimination inlEquality unionElimination lambdaEquality because_Cache inrEquality hypothesisEquality hypothesis unionEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[n,k:\mBbbN{}].    (min-increasing-sequence(a;n;k)  \mmember{}  \mBbbN{}?)



Date html generated: 2017_04_20-AM-07_36_47
Last ObjectModification: 2017_04_18-AM-10_34_37

Theory : continuity


Home Index