Nuprl Lemma : pseudo-bounded_wf

[S:Type]. pseudo-bounded(S) ∈ ℙ supposing S ⊆r ℕ


Proof




Definitions occuring in Statement :  pseudo-bounded: pseudo-bounded(S) nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a pseudo-bounded: pseudo-bounded(S) so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B int_upper: {i...} so_apply: x[s]
Lemmas referenced :  all_wf nat_wf exists_wf int_upper_wf less_than_wf int_upper_subtype_nat subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis cumulativity hypothesisEquality lambdaEquality because_Cache setElimination rename applyEquality functionExtensionality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[S:Type].  pseudo-bounded(S)  \mmember{}  \mBbbP{}  supposing  S  \msubseteq{}r  \mBbbN{}



Date html generated: 2016_12_12-AM-09_23_30
Last ObjectModification: 2016_11_22-PM-04_25_41

Theory : continuity


Home Index