Nuprl Lemma : pseudo-bounded_wf
∀[S:Type]. pseudo-bounded(S) ∈ ℙ supposing S ⊆r ℕ
Proof
Definitions occuring in Statement : 
pseudo-bounded: pseudo-bounded(S)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
pseudo-bounded: pseudo-bounded(S)
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
int_upper: {i...}
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
nat_wf, 
exists_wf, 
int_upper_wf, 
less_than_wf, 
int_upper_subtype_nat, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
because_Cache, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[S:Type].  pseudo-bounded(S)  \mmember{}  \mBbbP{}  supposing  S  \msubseteq{}r  \mBbbN{}
Date html generated:
2016_12_12-AM-09_23_30
Last ObjectModification:
2016_11_22-PM-04_25_41
Theory : continuity
Home
Index