Nuprl Lemma : rep-seq-from_wf
∀[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T]. ∀[f:ℕ ⟶ T].  (rep-seq-from(s;n;f) ∈ ℕ ⟶ T)
Proof
Definitions occuring in Statement : 
rep-seq-from: rep-seq-from(s;n;f), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rep-seq-from: rep-seq-from(s;n;f), 
nat: ℕ, 
less_than: a < b, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
top: Top, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k
Lemmas referenced : 
less_than_wf, 
int_seg_wf, 
lelt_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
because_Cache, 
hypothesis, 
lessCases, 
independent_pairFormation, 
isectElimination, 
baseClosed, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
hypothesisEquality, 
axiomSqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
imageElimination, 
productElimination, 
extract_by_obid, 
independent_functionElimination, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  T].    (rep-seq-from(s;n;f)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  T)
Date html generated:
2019_06_20-PM-02_56_52
Last ObjectModification:
2018_08_20-PM-09_38_45
Theory : continuity
Home
Index