Nuprl Lemma : strong-continuity2_biject

[T,S:Type].
  ∀g:S ⟶ ℕ
    (Bij(S;ℕ;g)
     (∀F:(ℕ ⟶ T) ⟶ S
          (strong-continuity2(T;g F)
           (∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (S?)
               ∀f:ℕ ⟶ T
                 ((∃n:ℕ((M f) (inl (F f)) ∈ (S?)))
                 ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (S?) supposing ↑isl(M f)))))))


Proof




Definitions occuring in Statement :  strong-continuity2: strong-continuity2(T;F) biject: Bij(A;B;f) compose: g int_seg: {i..j-} nat: assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  prop: nat: implies:  Q all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  le_wf zero-le-nat subtype_rel_self nat_wf strong-continuity2_biject_retract
Rules used in proof :  universeEquality rename setElimination sqequalRule dependent_set_memberEquality applyEquality lambdaFormation because_Cache independent_functionElimination lambdaEquality dependent_functionElimination hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[T,S:Type].
    \mforall{}g:S  {}\mrightarrow{}  \mBbbN{}
        (Bij(S;\mBbbN{};g)
        {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  S
                    (strong-continuity2(T;g  o  F)
                    {}\mRightarrow{}  (\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (S?)
                              \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T
                                  ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))
                                  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f)))))))



Date html generated: 2017_09_29-PM-06_05_19
Last ObjectModification: 2017_09_04-AM-10_36_13

Theory : continuity


Home Index