Nuprl Lemma : strong-continuity2_biject_retract

[T,S,U:Type].
  ∀r:ℕ ⟶ U
    ((U ⊆r ℕ)
     (∀x:U. ((r x) x ∈ U))
     (∀g:S ⟶ U
          (Bij(S;U;g)
           (∀F:(ℕ ⟶ T) ⟶ S
                (strong-continuity2(T;g F)
                 (∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (S?)
                     ∀f:ℕ ⟶ T
                       ((∃n:ℕ((M f) (inl (F f)) ∈ (S?)))
                       ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (S?) supposing ↑isl(M f)))))))))


Proof




Definitions occuring in Statement :  strong-continuity2: strong-continuity2(T;F) biject: Bij(A;B;f) compose: g int_seg: {i..j-} nat: assert: b isl: isl(x) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: member: t ∈ T compose: g exists: x:A. B[x] strong-continuity2: strong-continuity2(T;F) implies:  Q all: x:A. B[x] uall: [x:A]. B[x] and: P ∧ Q nat: uimplies: supposing a isl: isl(x) pi1: fst(t) squash: T uiff: uiff(P;Q) true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q not: ¬A false: False le: A ≤ B less_than': less_than'(a;b) assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff sq_type: SQType(T)
Lemmas referenced :  subtype_rel_wf equal_wf all_wf biject_wf nat_wf compose_wf strong-continuity2_wf biject-inverse unit_wf2 int_seg_wf istype-nat istype-assert btrue_wf bfalse_wf squash_wf true_wf istype-universe inl-one-one iff_weakening_equal not-0-eq-1 inr-one-one btrue_neq_bfalse subtype_rel_self subtype_rel_function int_seg_subtype_nat istype-false istype-void subtype_base_sq bool_wf bool_subtype_base
Rules used in proof :  universeEquality lambdaEquality applyEquality functionExtensionality functionEquality rename hypothesis independent_functionElimination hypothesisEquality isectElimination extract_by_obid introduction cut sqequalRule thin productElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination Error :inlEquality_alt,  Error :universeIsType,  Error :inrEquality_alt,  Error :equalityIstype,  equalityTransitivity equalitySymmetry dependent_functionElimination Error :functionIsType,  natural_numberEquality setElimination Error :productIsType,  because_Cache Error :unionIsType,  Error :isectIsType,  independent_pairEquality Error :dependent_pairEquality_alt,  axiomEquality Error :isect_memberEquality_alt,  imageElimination instantiate unionEquality independent_isectElimination imageMemberEquality baseClosed applyLambdaEquality voidElimination Error :dependent_set_memberEquality_alt,  independent_pairFormation cumulativity

Latex:
\mforall{}[T,S,U:Type].
    \mforall{}r:\mBbbN{}  {}\mrightarrow{}  U
        ((U  \msubseteq{}r  \mBbbN{})
        {}\mRightarrow{}  (\mforall{}x:U.  ((r  x)  =  x))
        {}\mRightarrow{}  (\mforall{}g:S  {}\mrightarrow{}  U
                    (Bij(S;U;g)
                    {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  S
                                (strong-continuity2(T;g  o  F)
                                {}\mRightarrow{}  (\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (S?)
                                          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T
                                              ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))
                                              \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f)))))))))



Date html generated: 2019_06_20-PM-02_50_31
Last ObjectModification: 2019_02_07-PM-01_06_04

Theory : continuity


Home Index