Nuprl Lemma : weakly-decidable-nset_wf

[K:Type]. (WD(K) ∈ ℙ)


Proof




Definitions occuring in Statement :  weakly-decidable-nset: WD(K) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  so_apply: x[s] squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k so_lambda: λ2x.t[x] int_seg: {i..j-} or: P ∨ Q uimplies: supposing a nat: guard: {T} subtype_rel: A ⊆B all: x:A. B[x] and: P ∧ Q prop: weakly-decidable-nset: WD(K) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe not_wf int_subtype_base istype-int lelt_wf set_subtype_base equal-wf-base subtype_rel_transitivity istype-nat int_seg_wf nat_wf subtype_rel_wf
Rules used in proof :  universeEquality instantiate equalitySymmetry equalityTransitivity axiomEquality because_Cache imageElimination productElimination unionEquality independent_isectElimination intEquality rename setElimination Error :lambdaEquality_alt,  applyEquality functionEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid productEquality sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:Type].  (WD(K)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-03_01_53
Last ObjectModification: 2019_06_13-PM-00_36_48

Theory : continuity


Home Index