Nuprl Lemma : stable__function_equal
∀[A,B:Type]. ∀[f,g:A ⟶ B].  Stable{f = g ∈ (A ⟶ B)} supposing ∀x:A. Stable{(f x) = (g x) ∈ B}
Proof
Definitions occuring in Statement : 
stable: Stable{P}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
stable: Stable{P}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
isect_wf, 
all_wf, 
not_wf, 
equal_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
functionExtensionality, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation, 
independent_functionElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
lemma_by_obid, 
isectElimination, 
functionEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
productElimination, 
setEquality, 
voidElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f,g:A  {}\mrightarrow{}  B].    Stable\{f  =  g\}  supposing  \mforall{}x:A.  Stable\{(f  x)  =  (g  x)\}
Date html generated:
2016_05_13-PM-03_09_31
Last ObjectModification:
2016_01_06-PM-05_27_14
Theory : core_2
Home
Index