Nuprl Lemma : atom2-deq_wf
Atom2Deq ∈ EqDecider(Atom2)
Proof
Definitions occuring in Statement : 
atom2-deq: Atom2Deq, 
deq: EqDecider(T), 
atom: Atom$n, 
member: t ∈ T
Definitions unfolded in proof : 
deq: EqDecider(T), 
atom2-deq: Atom2Deq, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
atom2-deq-aux, 
eq_atom_wf2, 
assert_of_eq_atom2, 
equal_wf, 
assert_wf, 
all_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
lemma_by_obid, 
dependent_set_memberEquality, 
lambdaEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
atomnEquality, 
lambdaFormation, 
independent_pairFormation, 
productElimination, 
independent_isectElimination, 
applyEquality
Latex:
Atom2Deq  \mmember{}  EqDecider(Atom2)
Date html generated:
2016_05_14-PM-03_33_51
Last ObjectModification:
2015_12_26-PM-06_00_51
Theory : decidable!equality
Home
Index