Nuprl Lemma : l_all-remove-repeats
∀[T:Type]. ∀eq:EqDecider(T). ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ ℙ.  ((∀x∈remove-repeats(eq;L).P[x]) 
⇐⇒ (∀x∈L.P[x]))
Proof
Definitions occuring in Statement : 
remove-repeats: remove-repeats(eq;L)
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
Lemmas referenced : 
member-remove-repeats, 
l_member_wf, 
remove-repeats_wf, 
subtype_rel_self, 
l_all_iff, 
l_all_wf, 
list_wf, 
deq_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
lambdaEquality_alt, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
dependent_functionElimination, 
hypothesis, 
productElimination, 
independent_functionElimination, 
universeIsType, 
setIsType, 
because_Cache, 
independent_pairFormation, 
sqequalRule, 
functionIsType, 
applyEquality, 
instantiate, 
promote_hyp, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}.
        ((\mforall{}x\mmember{}remove-repeats(eq;L).P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x\mmember{}L.P[x]))
Date html generated:
2020_05_19-PM-09_52_30
Last ObjectModification:
2019_10_18-PM-00_14_07
Theory : decidable!equality
Home
Index