Nuprl Lemma : l_eqset_wf
∀[T:Type]. ∀[L1,L2:T List].  (l_eqset(T;L1;L2) ∈ ℙ)
Proof
Definitions occuring in Statement : 
l_eqset: l_eqset(T;L1;L2)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
l_eqset: l_eqset(T;L1;L2)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
iff_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    (l\_eqset(T;L1;L2)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-03_29_24
Last ObjectModification:
2015_12_26-PM-06_24_39
Theory : decidable!equality
Home
Index