Nuprl Lemma : l_eqset_wf

[T:Type]. ∀[L1,L2:T List].  (l_eqset(T;L1;L2) ∈ ℙ)


Proof




Definitions occuring in Statement :  l_eqset: l_eqset(T;L1;L2) list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l_eqset: l_eqset(T;L1;L2) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf iff_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    (l\_eqset(T;L1;L2)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_29_24
Last ObjectModification: 2015_12_26-PM-06_24_39

Theory : decidable!equality


Home Index