Nuprl Lemma : l_intersection_nil

[A:Type]. ∀eq:EqDecider(A). ∀L:A List.  (l_intersection(eq;L;[]) [] ∈ (A List))


Proof




Definitions occuring in Statement :  l_intersection: l_intersection(eq;L1;L2) nil: [] list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  l_intersection: l_intersection(eq;L1;L2) all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  deq_member_nil_lemma filter-bfalse subtype_rel_list top_wf nil_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction lambdaFormation isectElimination hypothesisEquality applyEquality independent_isectElimination lambdaEquality because_Cache axiomEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}eq:EqDecider(A).  \mforall{}L:A  List.    (l\_intersection(eq;L;[])  =  [])



Date html generated: 2016_05_14-PM-03_32_33
Last ObjectModification: 2015_12_26-PM-06_01_06

Theory : decidable!equality


Home Index