Nuprl Lemma : l_intersection_nil
∀[A:Type]. ∀eq:EqDecider(A). ∀L:A List.  (l_intersection(eq;L;[]) = [] ∈ (A List))
Proof
Definitions occuring in Statement : 
l_intersection: l_intersection(eq;L1;L2)
, 
nil: []
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
l_intersection: l_intersection(eq;L1;L2)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
deq_member_nil_lemma, 
filter-bfalse, 
subtype_rel_list, 
top_wf, 
nil_wf, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
lambdaFormation, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}eq:EqDecider(A).  \mforall{}L:A  List.    (l\_intersection(eq;L;[])  =  [])
Date html generated:
2016_05_14-PM-03_32_33
Last ObjectModification:
2015_12_26-PM-06_01_06
Theory : decidable!equality
Home
Index