Nuprl Lemma : name-subst_wf
∀[s:(Name × Name) List]. ∀[x:Name].  (name-subst(s;x) ∈ Name)
Proof
Definitions occuring in Statement : 
name-subst: name-subst(s;x)
, 
name: Name
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
name-subst: name-subst(s;x)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
apply-alist_wf, 
name_wf, 
name-deq_wf, 
unit_wf2, 
equal_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
unionEquality, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
productEquality
Latex:
\mforall{}[s:(Name  \mtimes{}  Name)  List].  \mforall{}[x:Name].    (name-subst(s;x)  \mmember{}  Name)
Date html generated:
2019_06_20-PM-01_58_10
Last ObjectModification:
2018_08_21-PM-01_55_31
Theory : decidable!equality
Home
Index