Nuprl Lemma : name-subst_wf

[s:(Name × Name) List]. ∀[x:Name].  (name-subst(s;x) ∈ Name)


Proof




Definitions occuring in Statement :  name-subst: name-subst(s;x) name: Name list: List uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T name-subst: name-subst(s;x) all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  apply-alist_wf name_wf name-deq_wf unit_wf2 equal_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality unionEquality lambdaFormation equalityTransitivity equalitySymmetry unionElimination dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality because_Cache productEquality

Latex:
\mforall{}[s:(Name  \mtimes{}  Name)  List].  \mforall{}[x:Name].    (name-subst(s;x)  \mmember{}  Name)



Date html generated: 2019_06_20-PM-01_58_10
Last ObjectModification: 2018_08_21-PM-01_55_31

Theory : decidable!equality


Home Index