Nuprl Lemma : sq-decider-atom-deq

sq-decider(AtomDeq)


Proof




Definitions occuring in Statement :  atom-deq: AtomDeq sq-decider: sq-decider(eq)
Definitions unfolded in proof :  atom-deq: AtomDeq sq-decider: sq-decider(eq) uall: [x:A]. B[x] member: t ∈ T implies:  Q uimplies: supposing a exists: x:A. B[x] sq_type: SQType(T) all: x:A. B[x] guard: {T} prop: so_lambda: λ2x.t[x] so_apply: x[s] has-value: (a)↓ eq_atom: =a y and: P ∧ Q uiff: uiff(P;Q) subtype_rel: A ⊆B assert: b ifthenelse: if then else fi  true: True
Lemmas referenced :  atom_subtype_base assert_of_eq_atom is-exception_wf has-value_wf_base base_wf exists_wf subtype_rel_self subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule isect_memberFormation introduction cut lambdaFormation thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis productElimination dependent_functionElimination hypothesisEquality independent_functionElimination lambdaEquality sqequalIntensionalEquality baseApply closedConclusion baseClosed sqequalAxiom isect_memberEquality divergentSqle sqleReflexivity callbyvalueAtomEq equalityTransitivity equalitySymmetry applyEquality natural_numberEquality

Latex:
sq-decider(AtomDeq)



Date html generated: 2016_05_14-AM-06_07_08
Last ObjectModification: 2016_01_14-PM-07_31_52

Theory : equality!deciders


Home Index