Nuprl Lemma : sq-decider-atom-deq
sq-decider(AtomDeq)
Proof
Definitions occuring in Statement : 
atom-deq: AtomDeq
, 
sq-decider: sq-decider(eq)
Definitions unfolded in proof : 
atom-deq: AtomDeq
, 
sq-decider: sq-decider(eq)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
has-value: (a)↓
, 
eq_atom: x =a y
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
true: True
Lemmas referenced : 
atom_subtype_base, 
assert_of_eq_atom, 
is-exception_wf, 
has-value_wf_base, 
base_wf, 
exists_wf, 
subtype_rel_self, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
productElimination, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
lambdaEquality, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalAxiom, 
isect_memberEquality, 
divergentSqle, 
sqleReflexivity, 
callbyvalueAtomEq, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
natural_numberEquality
Latex:
sq-decider(AtomDeq)
Date html generated:
2016_05_14-AM-06_07_08
Last ObjectModification:
2016_01_14-PM-07_31_52
Theory : equality!deciders
Home
Index