Nuprl Lemma : unit-deq_wf

UnitDeq ∈ EqDecider(Unit)


Proof




Definitions occuring in Statement :  unit-deq: UnitDeq deq: EqDecider(T) unit: Unit member: t ∈ T
Definitions unfolded in proof :  unit-deq: UnitDeq deq: EqDecider(T) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q assert: b ifthenelse: if then else fi  btrue: tt true: True member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q subtype_rel: A ⊆B top: Top so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf unit_wf2 equal-unit assert_wf btrue_wf top_wf all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lambdaFormation independent_pairFormation hypothesis natural_numberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality lambdaEquality isect_memberEquality voidElimination voidEquality sqequalRule because_Cache dependent_set_memberEquality

Latex:
UnitDeq  \mmember{}  EqDecider(Unit)



Date html generated: 2016_05_14-AM-06_07_02
Last ObjectModification: 2015_12_26-AM-11_46_27

Theory : equality!deciders


Home Index