Nuprl Lemma : unit-deq_wf
UnitDeq ∈ EqDecider(Unit)
Proof
Definitions occuring in Statement : 
unit-deq: UnitDeq
, 
deq: EqDecider(T)
, 
unit: Unit
, 
member: t ∈ T
Definitions unfolded in proof : 
unit-deq: UnitDeq
, 
deq: EqDecider(T)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
unit_wf2, 
equal-unit, 
assert_wf, 
btrue_wf, 
top_wf, 
all_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lambdaFormation, 
independent_pairFormation, 
hypothesis, 
natural_numberEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
because_Cache, 
dependent_set_memberEquality
Latex:
UnitDeq  \mmember{}  EqDecider(Unit)
Date html generated:
2016_05_14-AM-06_07_02
Last ObjectModification:
2015_12_26-AM-11_46_27
Theory : equality!deciders
Home
Index