Nuprl Lemma : decidable__all_length_bool
∀[P:(𝔹 List) ⟶ ℙ]. ((∀L:𝔹 List. Dec(P[L]))
⇒ (∀n:ℕ. Dec(∀L:𝔹 List. ((||L|| = n ∈ ℤ)
⇒ P[L]))))
Proof
Definitions occuring in Statement :
length: ||as||
,
list: T List
,
nat: ℕ
,
bool: 𝔹
,
decidable: Dec(P)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
decidable__all_length,
bool_wf,
false_wf,
le_wf,
equipollent-two,
equipollent_wf,
int_seg_wf,
all_wf,
list_wf,
decidable_wf
Rules used in proof :
cut,
lemma_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
hypothesis,
isect_memberFormation,
hypothesisEquality,
lambdaFormation,
independent_functionElimination,
dependent_pairFormation,
dependent_set_memberEquality,
natural_numberEquality,
sqequalRule,
independent_pairFormation,
setElimination,
rename,
lambdaEquality,
applyEquality,
functionEquality,
cumulativity,
universeEquality
Latex:
\mforall{}[P:(\mBbbB{} List) {}\mrightarrow{} \mBbbP{}]. ((\mforall{}L:\mBbbB{} List. Dec(P[L])) {}\mRightarrow{} (\mforall{}n:\mBbbN{}. Dec(\mforall{}L:\mBbbB{} List. ((||L|| = n) {}\mRightarrow{} P[L]))))
Date html generated:
2016_05_14-PM-04_06_42
Last ObjectModification:
2015_12_26-PM-07_41_43
Theory : equipollence!!cardinality!
Home
Index