Nuprl Lemma : decidable__all_length_bool
∀[P:(𝔹 List) ⟶ ℙ]. ((∀L:𝔹 List. Dec(P[L])) ⇒ (∀n:ℕ. Dec(∀L:𝔹 List. ((||L|| = n ∈ ℤ) ⇒ P[L]))))
Proof
Definitions occuring in Statement : 
length: ||as||, 
list: T List, 
nat: ℕ, 
bool: 𝔹, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
decidable__all_length, 
bool_wf, 
false_wf, 
le_wf, 
equipollent-two, 
equipollent_wf, 
int_seg_wf, 
all_wf, 
list_wf, 
decidable_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
isect_memberFormation, 
hypothesisEquality, 
lambdaFormation, 
independent_functionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
setElimination, 
rename, 
lambdaEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[P:(\mBbbB{}  List)  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}L:\mBbbB{}  List.  Dec(P[L]))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  Dec(\mforall{}L:\mBbbB{}  List.  ((||L||  =  n)  {}\mRightarrow{}  P[L]))))
Date html generated:
2016_05_14-PM-04_06_42
Last ObjectModification:
2015_12_26-PM-07_41_43
Theory : equipollence!!cardinality!
Home
Index