Nuprl Lemma : equipollent-iff-inverse-funs

[A,B:Type].  (A ⇐⇒ ∃p:{A ⟶ B × (B ⟶ A)| InvFuns(A;B;fst(p);snd(p))})


Proof




Definitions occuring in Statement :  equipollent: B inv_funs: InvFuns(A;B;f;g) uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) sq_exists: x:{A| B[x]} iff: ⇐⇒ Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  equipollent: B uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q sq_exists: x:{A| B[x]} sq_stable: SqStable(P) squash: T all: x:A. B[x] pi1: fst(t) pi2: snd(t)
Lemmas referenced :  biject-iff-inverse inv_funs_wf sq_exists_wf pi2_wf pi1_wf sq_stable__inv_funs biject_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation independent_pairFormation lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid isectElimination functionEquality hypothesisEquality lambdaEquality hypothesis setElimination rename independent_functionElimination introduction imageMemberEquality baseClosed imageElimination productEquality universeEquality dependent_functionElimination dependent_set_memberFormation independent_pairEquality dependent_pairFormation

Latex:
\mforall{}[A,B:Type].    (A  \msim{}  B  \mLeftarrow{}{}\mRightarrow{}  \mexists{}p:\{A  {}\mrightarrow{}  B  \mtimes{}  (B  {}\mrightarrow{}  A)|  InvFuns(A;B;fst(p);snd(p))\})



Date html generated: 2016_05_14-PM-03_59_43
Last ObjectModification: 2016_01_14-PM-11_06_47

Theory : equipollence!!cardinality!


Home Index