Nuprl Lemma : equipollent-iff-inverse-funs
∀[A,B:Type].  (A ~ B 
⇐⇒ ∃p:{A ⟶ B × (B ⟶ A)| InvFuns(A;B;fst(p);snd(p))})
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
inv_funs: InvFuns(A;B;f;g)
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
sq_exists: ∃x:{A| B[x]}
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
sq_exists: ∃x:{A| B[x]}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
biject-iff-inverse, 
inv_funs_wf, 
sq_exists_wf, 
pi2_wf, 
pi1_wf, 
sq_stable__inv_funs, 
biject_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
functionEquality, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
setElimination, 
rename, 
independent_functionElimination, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productEquality, 
universeEquality, 
dependent_functionElimination, 
dependent_set_memberFormation, 
independent_pairEquality, 
dependent_pairFormation
Latex:
\mforall{}[A,B:Type].    (A  \msim{}  B  \mLeftarrow{}{}\mRightarrow{}  \mexists{}p:\{A  {}\mrightarrow{}  B  \mtimes{}  (B  {}\mrightarrow{}  A)|  InvFuns(A;B;fst(p);snd(p))\})
Date html generated:
2016_05_14-PM-03_59_43
Last ObjectModification:
2016_01_14-PM-11_06_47
Theory : equipollence!!cardinality!
Home
Index