Nuprl Lemma : equipollent-subtract-one

a:ℕ. ∀i:ℕa.  {x:ℕa| ¬(x i ∈ ℕa)}  ~ ℕ1


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: all: x:A. B[x] not: ¬A set: {x:A| B[x]}  subtract: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: member: t ∈ T all: x:A. B[x]
Lemmas referenced :  equipollent-subtract false_wf le_wf equal_wf int_seg_wf equipollent-one nat_wf
Rules used in proof :  independent_functionElimination rename setElimination lambdaEquality isectElimination hypothesis independent_pairFormation sqequalRule natural_numberEquality dependent_set_memberEquality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution lemma_by_obid cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:\mBbbN{}.  \mforall{}i:\mBbbN{}a.    \{x:\mBbbN{}a|  \mneg{}(x  =  i)\}    \msim{}  \mBbbN{}a  -  1



Date html generated: 2018_05_21-PM-00_53_32
Last ObjectModification: 2017_12_07-PM-06_24_44

Theory : equipollence!!cardinality!


Home Index