Nuprl Lemma : equipollent_functionality_wrt_ext-eq-right

[A,B1,B2:Type].  B1 ⇐⇒ B2 supposing B1 ≡ B2


Proof




Definitions occuring in Statement :  equipollent: B ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B iff: ⇐⇒ Q implies:  Q rev_implies:  Q prop: guard: {T}
Lemmas referenced :  equipollent_wf ext-eq_wf equipollent_functionality_wrt_ext-eq ext-eq_weakening ext-eq_inversion equipollent_transitivity equipollent_weakening_ext-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis rename independent_pairFormation lambdaFormation lemma_by_obid isectElimination hypothesisEquality universeEquality because_Cache independent_isectElimination independent_functionElimination

Latex:
\mforall{}[A,B1,B2:Type].    A  \msim{}  B1  \mLeftarrow{}{}\mRightarrow{}  A  \msim{}  B2  supposing  B1  \mequiv{}  B2



Date html generated: 2016_05_14-PM-04_00_16
Last ObjectModification: 2015_12_26-PM-07_44_28

Theory : equipollence!!cardinality!


Home Index