Nuprl Lemma : ax_choice
∀[A,B:Type]. ∀[Q:A ⟶ B ⟶ ℙ].  ((∀x:A. ∃y:B. Q[x;y]) 
⇒ (∃f:A ⟶ B. ∀x:A. Q[x;f x]))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
Lemmas referenced : 
all_wf, 
exists_wf, 
subtype_rel_self, 
pi1_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
Error :functionIsType, 
Error :universeIsType, 
universeEquality, 
Error :inhabitedIsType, 
rename, 
dependent_pairFormation, 
productEquality, 
instantiate, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[Q:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:A.  \mexists{}y:B.  Q[x;y])  {}\mRightarrow{}  (\mexists{}f:A  {}\mrightarrow{}  B.  \mforall{}x:A.  Q[x;f  x]))
Date html generated:
2019_06_20-PM-00_26_27
Last ObjectModification:
2019_06_19-PM-06_41_26
Theory : fun_1
Home
Index