Nuprl Lemma : ax_choice

[A,B:Type]. ∀[Q:A ⟶ B ⟶ ℙ].  ((∀x:A. ∃y:B. Q[x;y])  (∃f:A ⟶ B. ∀x:A. Q[x;f x]))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] exists: x:A. B[x] all: x:A. B[x] subtype_rel: A ⊆B pi1: fst(t)
Lemmas referenced :  all_wf exists_wf subtype_rel_self pi1_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis Error :functionIsType,  Error :universeIsType,  universeEquality Error :inhabitedIsType,  rename dependent_pairFormation productEquality instantiate because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[Q:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:A.  \mexists{}y:B.  Q[x;y])  {}\mRightarrow{}  (\mexists{}f:A  {}\mrightarrow{}  B.  \mforall{}x:A.  Q[x;f  x]))



Date html generated: 2019_06_20-PM-00_26_27
Last ObjectModification: 2019_06_19-PM-06_41_26

Theory : fun_1


Home Index