Nuprl Lemma : eq_to_le

[i,j:ℤ].  i ≤ supposing j ∈ ℤ


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B
Lemmas referenced :  equal_wf less_than'_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis unionElimination isectElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll productElimination independent_pairEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[i,j:\mBbbZ{}].    i  \mleq{}  j  supposing  i  =  j



Date html generated: 2016_05_14-AM-07_20_18
Last ObjectModification: 2016_01_07-PM-03_59_46

Theory : int_2


Home Index