Nuprl Lemma : add-polynom-int-val-sq
∀[n:ℕ]. ∀[l:{l:ℤ List| ||l|| = n ∈ ℤ} ]. ∀[p,q:polyform(n)]. ∀[rmz:𝔹].  (l@add-polynom(n;rmz;p;q) ~ l@p + l@q)
Proof
Definitions occuring in Statement : 
add-polynom: add-polynom(n;rmz;p;q), 
poly-int-val: l@p, 
polyform: polyform(n), 
length: ||as||, 
list: T List, 
nat: ℕ, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
add: n + m, 
int: ℤ, 
sqequal: s ~ t, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
add-polynom-int-val, 
bool_wf, 
polyform_wf, 
list_wf, 
istype-int, 
length_wf_nat, 
set_subtype_base, 
le_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomSqEquality, 
Error :universeIsType, 
sqequalRule, 
Error :isect_memberEquality_alt, 
because_Cache, 
Error :inhabitedIsType, 
Error :setIsType, 
Error :equalityIsType4, 
applyEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].  \mforall{}[p,q:polyform(n)].  \mforall{}[rmz:\mBbbB{}].
    (l@add-polynom(n;rmz;p;q)  \msim{}  l@p  +  l@q)
Date html generated:
2019_06_20-PM-01_52_21
Last ObjectModification:
2018_10_04-PM-00_15_06
Theory : integer!polynomials
Home
Index